Skip to main content
Log in

UAV Model-based Flight Control with Artificial Neural Networks: A Survey

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Model-Based Control (MBC) techniques have dominated flight controller designs for Unmanned Aerial Vehicles (UAVs). Despite their success, MBC-based designs rely heavily on the accuracy of the mathematical model of the real plant and they suffer from the explosion of complexity problem. These two challenges may be mitigated by Artificial Neural Networks (ANNs) that have been widely studied due to their unique features and advantages in system identification and controller design. Viewed from this perspective, this survey provides a comprehensive literature review on combined MBC-ANN techniques that are suitable for UAV flight control, i.e., low-level control. The objective is to pave the way and establish a foundation for efficient controller designs with performance guarantees. A reference template is used throughout the survey as a common basis for comparative studies to fairly determine capabilities and limitations of existing research. The end-result offers supported information for advantages, disadvantages and applicability of a family of relevant controllers to UAV prototypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Voos, H.: Nonlinear control of a quadrotor micro-uav using feedback-linearization. 2009 IEEE International Conference on Mechatronics, pp 1–6 (2009)

  2. Nicol, C., Macnab, C.J.B., Ramirez-Serrano, A.: Robust adaptive control of a quadrotor helicopter. Mechatronics 21(6), 927–938 (2011)

    Article  Google Scholar 

  3. Alexis, K., Nikolakopoulos, G., Tzes, A.: Experimental model predictive attitude tracking control of a quadrotor helicopter subject to wind-gusts. 18th Mediterranean Conference on Control and Automation, MED’10, pp 1461–1466 (2010)

  4. Xu, R., Ozguner, U.: Sliding mode control of a quadrotor helicopter. Proceedings of the 45th IEEE Conference on Decision and Control, pp 4957–4962 (2006)

  5. Das, A., Lewis, F.L., Subbarao, K.: Backstepping approach for controlling a quadrotor using lagrange form dynamics. J. Intell. Robot. Syst. 56, 127–151 (2009)

    Article  Google Scholar 

  6. Raffo, G.V., Ortega, M.G., Rubio, F.R.: An underactuated h infinity control strategy for a quadrotor helicopter. 2009 European Control Conference (ECC), pp 3845–3850 (2009)

  7. Santoso, F., Garratt, M.A., Anavatti, S.G.: State-of-the-art intelligent flight control systems in unmanned aerial vehicles. IEEE Trans. Autom. Sci. Eng. 15(2), 613–627 (2018)

    Article  Google Scholar 

  8. Prouty, R.W.: Helicopter performance, stability, and control (1986)

  9. Hoffmann, G., Huang, H., Waslander, S., Tomlin, C.: Quadrotor helicopter flight dynamics and control: Theory and experiment. In: AIAA Guidance, Navigation and Control Conference and Exhibit, p 6461 (2007)

  10. Conyers, S.A., Rutherford, M.J., Valavanis, K.P.: An empirical evaluation of ceiling effect for small-scale rotorcraft*. 2018 International Conference on Unmanned Aircraft Systems (ICUAS), pp 243–249 (2018)

  11. Conyers, S.A., Rutherford, M.J., Valavanis, K.P.: An empirical evaluation of ground effect for small-scale rotorcraft. 2018 IEEE International Conference on Robotics and Automation (ICRA), pp 1244–1250 (2018)

  12. Shamma, J.S., Cloutier, J.R.: Gain-scheduled missile autopilot design using linear parameter varying transformations. Journal of guidance, Control, and dynamics 16(2), 256–263 (1993)

    Article  Google Scholar 

  13. Tsakalis, K.S., Ioannou, P.A.: Linear time-varying systems: control and adaptation. Prentice-Hall, Inc. (1993)

  14. Ioannou, P.A., Sun, J.: Robust adaptive control. PTR Prentice-Hall Upper Saddle River, NJ, vol. 1 (1996)

  15. Sadraey, M., Colgren, R.: Robust nonlinear controller design for a complete uav mission. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, p 6687 (2006)

  16. Fekri, S., Athans, M., Pascoal, A.: Issues , progress and new results in robust adaptive control (2006)

  17. Younes, Y.A., Drak, A., Noura, H.N., Rabhi, A., hajjaji, A.E.: Model-free control of a quadrotor vehicle. 2014 International Conference on Unmanned Aircraft Systems (ICUAS), pp 1126–1131 (2014)

  18. Chand, A.N., Kawanishi, M., Narikiyo, T.: Non-linear model-free control of flapping wing flying robot using ipid. 2016 IEEE International Conference on Robotics and Automation (ICRA), pp 2930–2937 (2016)

  19. Yip, P.P., Hedrick, J.K.: Adaptive dynamic surface control: a simplified algorithm for adaptive backstepping control of nonlinear systems. Int. J. Control. 71(5), 959–979 (1998)

    Article  MathSciNet  Google Scholar 

  20. Hunt, K.J., Sbarbaro, D., Żbikowski, R., Gawthrop, P.J.: Neural networks for control systems—a survey. Automatica 28(6), 1083–1112 (1992)

    Article  MathSciNet  Google Scholar 

  21. Carrio, A., Sampedro, C., Rodriguez-Ramos, A., Campoy, P.: A review of deep learning methods and applications for unmanned aerial vehicles. Journal of Sensors, 2017. https://doi.org/10.1155/2017/3296874 (2017)

  22. Jiang, Y., Yang, C., Na, J., Li, G., Li, Y., Zhong, J.: “A Brief Review of Neural Networks based Learning and Control and their Applications for Robots,” 2017, pp 1–30. https://doi.org/10.1155/2017/1895897 (2017)

  23. Hornik, K.M., Stinchcomb, M., White, H.: Multilayer feedforward networks are universal approximator. IEEE Trans. Neural Netw., vol. 2, 01 (1989)

  24. Cybenko, G.: Approximations by superpositions of a sigmoidal function. Mathematics Control Signals Systems, vol. 2 (1989)

  25. Lazer, D., Kennedy, R., King, G., Vespignani, A.: The parable of google flu: Traps in big data analysis. Science (New York, N.Y.) 343, 1203–5 (2014). https://doi.org/10.1126/science.1248506

    Article  Google Scholar 

  26. Cheng, T., Wen, P., Li, Y.D.: Research status of artificial neural network and its application assumption in aviation. 2016 12th International Conference on Computational Intelligence and Security (CIS), pp 407–410 (2016)

  27. Zhang, R., Zhang, J., Yu, H.: Review of modeling and control in uav autonomous maneuvering flight. 2018 IEEE International Conference on Mechatronics and Automation (ICMA), pp 1920–1925 (2018)

  28. Gu, W., Valavanis, K.P., Rutherford, M.J., Rizzo, A.: A survey of artificial neural networks with model-based control techniques for flight control of unmanned aerial vehicles. 2019 International Conference on Unmanned Aircraft Systems (ICUAS), pp 362–371 (2019)

  29. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. 1943. Bulletin of mathematical biology 52(1-2), 99–115 (1990). discussion 73–97

    Article  Google Scholar 

  30. Rosenblatt, F.F.: The perceptron: a probabilistic model for information storage and organization in the brain. Psychological review 65(6), 386–408 (1958)

    Article  Google Scholar 

  31. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323, 533–536 (1986)

    Article  Google Scholar 

  32. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313 5786, 504–7 (2006)

    Article  MathSciNet  Google Scholar 

  33. Schmidhuber, J.: Deep learning in neural networks: An overview. Neural networks : the official journal of the International Neural Network Society 61, 85–117 (2015)

    Article  Google Scholar 

  34. Beale, M.H., Hagan, M.T., Demuth, H.B.: Neural network toolboxTM user’s guide. The Mathworks Inc (1992)

  35. Broomhead, D.S., Lowe, D.: Multivariable functional interpolation and adaptive networks. Complex Systems, vol. 2 (1988)

  36. Zhang, Q., Benveniste, A.: Wavelet networks. IEEE transactions on neural networks 3(6), 889–98 (1992)

    Article  Google Scholar 

  37. Hahnloser, R.H.R., Sarpeshkar, R., Mahowald, M.A., Douglas, R.J., Seung, H.S.: Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit. Nature 405, 947–951 (2000)

    Article  Google Scholar 

  38. Albus, J.S.: I a new approach to manipulator control: The i cerebellar model articulation controller (1975)

  39. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. U.S.A. 79(8), 2554–8 (1982)

    Article  MathSciNet  Google Scholar 

  40. Elman, J.L.: Finding structure in time. Cognitive science 14(2), 179–211 (1990)

    Article  Google Scholar 

  41. Jaeger, H.: The”echo state”approach to analysing and training recurrent neural networks (2001)

  42. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997)

    Article  Google Scholar 

  43. Hochreiter, S., Bengio, Y.: Gradient flow in recurrent nets: the difficulty of learning long-term dependencies (2001)

  44. Cho, K., van Merrienboer, B., Bahdanau, D., Bengio, Y.: On the properties of neural machine translation: Encoder-decoder approaches. ArXiv:1409.1259 (2014)

  45. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of physiology 117 4, 500–44 (1952)

    Article  Google Scholar 

  46. Gerstner, W., Kistler, W.M.: Spiking neuron models: Single neurons, populations, plasticity (2002)

  47. Werbos, P.J.: Backpropagation through time: What it does and how to do it (1990)

  48. Williams, R.J., Zipser, D.: A learning algorithm for continually running fully recurrent neural networks. Neural Comput. 1, 270–280 (1989)

    Article  Google Scholar 

  49. Sierra, J.E., Peñas, M.S.: Modelling engineering systems using analytical and neural techniques: Hybridization. Neurocomputing 271, 70–83 (2018)

    Article  Google Scholar 

  50. Struik, D.J.: A source book in mathematics, 1200-1800, Harvard University Press, vol. 11 (1969)

  51. Alvarenga, J., Vitzilaios, N.I., Valavanis, K.P., Rutherford, M.J.: Survey of unmanned helicopter model-based navigation and control techniques. Journal of Intelligent & Robotic Systems 80(1), 87–138 (2015)

    Article  Google Scholar 

  52. Kim, B.S., Calise, A.J.: Nonlinear flight control using neural networks. J. Guid. Control. Dyn. 20(1), 26–33 (1997)

    Article  Google Scholar 

  53. Mel, B.W., Koch, C.: Sigma-pi learning: On radial basis functions and cortical associative learning. In: NIPS (1989)

  54. Nguyen, N.T., Krishnakumar, K.S., Kaneshige, J., Nespeca, P.: Dynamics and adaptive control for stability recovery of damaged asymmetric aircraft (2006)

  55. Martin, R.S., Barrientos, A., Gutiérrez, P., del Cerro, J.: Unmanned aerial vehicle (uav) modelling based on supervised neural networks. Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006, pp 2497–2502 (2006)

  56. Martín, R.S., Barrientos, A., Gutiérrez, P., Cerro, J.D.: Neural networks training architecture for uav modelling. 2006 World Automation Congress, pp 1–6 (2006)

  57. Puttige, V.R., Anavatti, S.G.: Comparison of real-time online and offline neural network models for a uav. 2007 International Joint Conference on Neural Networks, pp 412–417 (2007)

  58. Garratt, M., Anavatti, S.: Non-linear control of heave for an unmanned helicopter using a neural network. Journal of Intelligent & Robotic Systems 66(4), 495–504 (2012). https://doi.org/10.1007/s10846-011-9634-9. https://doi.org/10.1007/s10846-011-9634-9

    Article  Google Scholar 

  59. Bhandari, S., Raheja, A., Tang, D., Ortega, K., Dadian, O., Bettadapura, A.: Nonlinear control of uavs using multi-layer perceptrons with off-line and on-line learning. 2014 American Control Conference, pp 2875–2880 (2014)

  60. Vargas, A., Ireland, M., Anderson, D.: System identification of multi-rotor uavs using echo state networks (2015)

  61. Mohajerin, N., Waslander, S.L.: Modelling a quadrotor vehicle using a modular deep recurrent neural network. 2015 IEEE International Conference on Systems, Man, and Cybernetics, pp 376–381 (2015)

  62. Mohajerin, N., Waslander, S.L.: Modular deep recurrent neural network: Application to quadrotors. 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp 1374–1379 (2014)

  63. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult. IEEE transactions on neural networks 5(2), 157–166 (1994)

    Article  Google Scholar 

  64. Punjani, A., Abbeel, P.: Deep learning helicopter dynamics models. 2015 IEEE International Conference on Robotics and Automation (ICRA), pp 3223–3230 (2015)

  65. Takens, F.: Detecting strange attractors in turbulence (1981)

  66. Robinson, J.C.: A topological delay embedding theorem for infinite-dimensional dynamical systems (2005)

  67. Bansal, S., Akametalu, A.K., Jiang, F.J., Laine, F., Tomlin, C.J.: Learning quadrotor dynamics using neural network for flight control. 2016 IEEE 55th Conference on Decision and Control (CDC), pp 4653–4660 (2016)

  68. Dadian, O., Bhandari, S., Raheja, A.: A recurrent neural network for nonlinear control of a fixed-wing uav. In: American Control Conference (ACC), 2016, pp 1341–1346, IEEE (2016)

  69. Lukoševičius, M.: A practical guide to applying echo state networks. In: Neural networks: Tricks of the trade, pp 659–686. Springer (2012)

  70. Teng, Y.-F., Hu, B., Liu, Z.-W., Huang, J., Guan, Z.-H.: Adaptive neural network control for quadrotor unmanned aerial vehicles. 2017 11th Asian Control Conference (ASCC), pp 988–992 (2017)

  71. Mohajerin, N., Mozifian, M., Waslander, S.L.: Deep learning a quadrotor dynamic model for multi-step prediction. 2018 IEEE International Conference on Robotics and Automation (ICRA),pp 2454–2459 (2018)

  72. Gori, M., Tesi, A.: On the problem of local minima in backpropagation. IEEE Trans. Pattern Anal. Mach. Intell. 14, 76–86 (1992)

    Article  Google Scholar 

  73. Karpatne, A., Watkins, W., Read, J., Kumar, V.: Physics-guided neural networks (pgnn): An application in lake temperature modeling. arXiv:1710.11431 (2017)

  74. Jia, X., Willard, J., Karpatne, A., Read, J.S., Zward, J., Steinbach, M., Kumar, V.: Physics guided rnns for modeling dynamical systems: A case study in simulating lake temperature profiles. ArXiv:1810.13075 (2018)

  75. Karpatne, A., Atluri, G., Faghmous, J.H., Steinbach, M., Banerjee, A., Ganguly, A.R., Shekhar, S., Samatova, N.F., Kumar, V.: Theory-guided data science: A new paradigm for scientific discovery from data. IEEE Trans. Knowl. Data Eng. 29, 2318–2331 (2016)

    Article  Google Scholar 

  76. Yang, T.-C., Juang, J.-G.: Aircraft landing control based on adaptive cmac. 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp 791–796 (2009)

  77. Leitner, J.A., Calise, A.J., Prasad, J.V.R.: Analysis of adaptive neural networks for helicopter flight control (1995)

  78. Kannan, S.K., Johnson, E.N.: Adaptive trajectory based control for autonomous helicopters (2002)

  79. Chowdhary, G.V., Johnson, E.N.: Theory and flight-test validation of a concurrent-learning adaptive controller. J. Guid. Control. Dyn. 34(2), 592–607 (2011)

    Article  Google Scholar 

  80. Ocaña, D.T., Shin, H.-S., Tsourdos, A.: Development of a nonlinear reconfigurable f-16 model and flight control systems using multilayer adaptive neural networks. IFAC-PapersOnLine 48(9), 138–143 (2015)

    Article  Google Scholar 

  81. Lai, G., Liu, Z.D., Zhang, Y., Chen, C.L.P.: Adaptive position/attitude tracking control of aerial robot with unknown inertial matrix based on a new robust neural identifier. IEEE Transactions on Neural Networks and Learning Systems 27, 18–31 (2016)

    Article  MathSciNet  Google Scholar 

  82. Eroglu, B., Sahin, C., Yuksek, B., Ure, N.K., Inalhan, G.: Deep recurrent and convolutional networks for accelerated fault tolerant adaptive flight control under severe failures. In: 2018 Annual American Control Conference (ACC), pp 6559–6565 (2018)

  83. Akella, M.R., Junkinst, J.L., Robinett, R.D.: Structured model reference adaptive control with actuator saturation limits (1998)

  84. Peng, C., Bai, Y., Gong, X., Gao, Q., Zhao, C., Tian, Y.: Modeling and robust backstepping sliding mode control with adaptive rbfnn for a novel coaxial eight-rotor uav. IEEE/CAA Journal of Automatica Sinica 2, 56–64 (2015)

    Article  MathSciNet  Google Scholar 

  85. Li, S., Wang, Y., Tan, J., Zheng, Y.: Adaptive rbfnns/integral sliding mode control for a quadrotor aircraft. Neurocomputing 216, 126–134 (2016)

    Article  Google Scholar 

  86. Madani, T., Benallegue, A.: Adaptive control via backstepping technique and neural networks of a quadrotor helicopter. IFAC Proceedings Volumes 41(2), 6513–6518 (2008)

    Article  Google Scholar 

  87. Howard, D., Elfes, A.: Evolving spiking networks for turbulence-tolerant quadrotor control (2014)

  88. Clawson, T.S., Ferrari, S., Fuller, S.B., Wood, R.J.: Spiking neural network (snn) control of a flapping insect-scale robot. 2016 IEEE 55th Conference on Decision and Control (CDC), pp 3381–3388 (2016)

  89. Lobo, J.L., Ser, J.D., Bifet, A., Kasabov, N.: Spiking neural networks and online learning: An overview and perspectives. Neural networks : the official journal of the International Neural Network Society 121, 88–100 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weibin Gu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is partially supported by an NSF Grant, CMMI-DCSD-1728454, Compagnia di San Paolo, and by an Amazon Research Award granted to Dr. A. Rizzo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, W., Valavanis, K.P., Rutherford, M.J. et al. UAV Model-based Flight Control with Artificial Neural Networks: A Survey. J Intell Robot Syst 100, 1469–1491 (2020). https://doi.org/10.1007/s10846-020-01227-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-020-01227-8

Keywords

Navigation