Skip to main content
Log in

Cooperative Localization and Mapping with Robotic Swarms

  • Regular paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

The Cooperative Localization (CL) problem considers the case where groups of robots aim to improve their overall localization by sharing position estimates within the team instead of using landmarks in the environment. Despite being a well-studied problem, very few works deal with the increased complexity when a very large number of robots is used, as is the case in robotic swarms. In this paper, we propose a methodology to perform cooperative localization in robotic swarms while they navigate through the environment. A collective motion strategy maintains the group’s cohesion, which allows each robot to perform the localization using information from its immediate neighbors. The method is based on the Covariance Intersection (CI) algorithm, which is employed to perform the localization in a decentralized way. Experiments in both simulation and real-world scenarios show the feasibility of the proposed approach. Furthermore, it overcomes and has a reduced space usage and time complexity compared to a traditional centralized EKF-based method. We also investigate how the methodology can be used by a robotic swarm to build occupancy grid maps, a task that generally requires more sophisticated robots and is heavily dependent on good localization estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Karam, N., Chausse, F., Aufrère, R., Chapuis, R.: Localization of a Group of Communicating Vehicles by State Exchange. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, pp. 519–524 (2006)

  2. Prorok, A., Bahr, A., Martinoli, A.: Low-Cost Collaborative Localization for Large-Scale Multi-Robot System. In: Proceedings of the IEEE International Conference on Robotics and Automation, Saint Paul, Minnesota, pp. 4236–4241 (2012)

  3. Lien, J.-M., Bayazit, O.B., Sowell, R.T., Rodríguez, S., Amato, N. M.: Shepherding Behaviors. In: Proceedings of the IEEE International Conference on Robotics and Automation, New Orleans, pp. 4159–4164 (2004)

  4. Saska, M., Vonásek, V., Chudoba, J., Thomas, J., Loianno, G., Kumar, V.: Swarm distribution and deployment for cooperative surveillance by Micro-Aerial vehicles. J. Intell. Robot. Syst., 1–24 (2016)

  5. Hsieh, M.A., Kumar, V., Chaimowicz, L.: Decentralized controllers for shape generation with robotic swarms. Robotica 26(5), 691–701 (2008)

    Article  Google Scholar 

  6. Ramaithitima, R., Whitzer, M., Bhattacharya, S., Kumar, V.: Automated Creation of Topological Maps in Unknown Environments Using a Swarm of Resource-Constrained robots. IEEE Robot. Autom. Lett. 1(2), 746–753 (2016)

    Article  Google Scholar 

  7. Kurazume, R., Nagata, S., Hirose, S.: Cooperative Positioning with Multiple Robots. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1250–1257 (1994)

  8. Rekleitis, I.M., Dudek, G., Milios, E.E.: On Multiagent Exploration. In: Proceedings of Vision Interface, pp. 455–461 (1998)

  9. Roumeliotis, S.I., Bekey, G.A.: Collective Localization: A distributed Kalman filter approach to localization of groups of mobile robots. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 3, pp. 2958–2965 (2000)

  10. Nerurkar, E.D., Roumeliotis, S.I., Martinelli, A.: Distributed maximum a posteriori estimation for multi-robot cooperative localization. In: Proceedings of the IEEE International Conference on Robotics and Automation, Kobe, pp. 1402–1409 (2009)

  11. Ahmadinia, M., Alinejad-Rokny, H., Ahangarikiasari, H.: Data aggregation in wireless sensor networks based on environmental similarity: a learning automata approach. J. Netw. 9, 2567–2573 (2014)

    Google Scholar 

  12. Mourikis, A.I., Roumeliotis, S.I.: Performance Analysis of Multirobot Cooperative Localization. IEEE Trans. Robot. 22(4), 666–681 (2006)

    Article  Google Scholar 

  13. Howard, A., Mataric, M., Sukhatme, G.: Putting the ‘i’ in ‘team’: an ego-centric approach to cooperative localization. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 1, Taipei, pp. 868–874 (2003)

  14. Julier, S.J., Uhlmann, J.K.: A non-divergent estimation algorithm in the presence of unknown correlations. In: Proceedings of the American Control Conference, vol. 4, pp. 2369–2373 (1997)

  15. Carrillo-Arce, L., Nerurkar, E., Gordillo, J., Roumeliotis, S.: Decentralized multi-robot cooperative localization using covariance intersection. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1412–1417 (2013)

  16. Huang, Y., Zhang, Y., Xu, B., Wu, Z., Chambers, J.A.: A new adaptive extended kalman filter for cooperative localization. IEEE Trans. Aerosp. Electron. Syst. 54(1), 353–368 (2018)

    Article  Google Scholar 

  17. Loefgren, I., Ahmed, N., Frew, E., Heckman, C., Humbert, S.: Scalable event-triggered data fusion for autonomous cooperative swarm localization. In: 2019 22th International Conference on Information Fusion (FUSION), pp. 1–8 (2019)

  18. Julier, S.J., Uhlmann, J.K.: General Decentralized 4Ata Fusion with Covariance Intersection (CI) In: Handbook of Data Fusion, D. Hall and J. Llinas, Eds. CRC Press, Boca Raton

  19. Wanasinghe, T.R., Mann, G.K.I., Gosine, R.G.: Decentralized Cooperative Localization for Heterogeneous Multi-Robot System Using Split Covariance Intersection Filter. In: Proceedings of Canadian Conference on Computer and Robot Vision, pp. 167–174 (2014)

  20. Uhlmann, J.K.: Covariance consistency methods for fault-tolerant distributed data fusion. Inf. Fusion 4(3), 201–215 (2003)

    Article  Google Scholar 

  21. Klingner, J., Ahmed, N., Correll, N.: Fault-tolerant Covariance Intersection for localizing robot swarms. Robot. Auton. Syst. 122, 10 (2019)

    Article  Google Scholar 

  22. Luft, L., Schubert, T., Roumeliotis, S.I., Burgard, W.: Recursive decentralized localization for multi-robot systems with asynchronous pairwise communication. Int. J. Robot. Res. 37(10):1152–1167 (2018)

  23. Lai, J., Zhou, Y., Lin, J., Cong, Y., Yang, J.: Cooperative localization based on efficient covariance intersection. IEEE Commun. Lett. 23(5), 871–874 (2019)

    Article  Google Scholar 

  24. Rekleitis, I.M., Dudek, G., Milios, E.E.: Multi-Robot Cooperative Localization: A Study of Trade-offs Between Efficiency and Accuracy. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, Lausanne, pp. 2690–2695 (2002)

  25. Tully, S., Kantor, G., Choset, H.: Leap-frog path design for multi-robot cooperative localization. In: Field and Service Robotics, ser. Springer Tracts in Advanced Robotics, A. Howard, K. Iagnemma, and A. Kelly, Eds. Springer, Berlin, vol. 62, pp. 307–317 (2010)

  26. Nemsick, B.E., Buchan, A.D., Nagabandi, A., Fearing, R.S., Zakhor, A.: Cooperative inchworm localization with a low cost team. In: Proceedings - IEEE International Conference on Robotics and Automation. IEEE, pp. 6323–6330 (2017)

  27. Pires, A.G., Macharet, D.G., Chaimowicz, L.: Towards cooperative localization in robotic swarms. In: Chong, N.-Y., Cho, Y.-J. (eds.) Distributed Autonomous Robotic Systems, pp 105–118. Springer, Tokyo (2016)

  28. Zhou, K., Roumeliotis, S.I.: Multi-robot active target tracking with combinations of relative observations. IEEE Trans. Robot. 27(4), 678–695 (August 2011)

    Article  Google Scholar 

  29. Pires, A.G., Macharet, D.G., Chaimowicz, L.: Exploring Heterogeneity for Cooperative Localization in Swarm Robotics. In: Proceedings of International Conference on Advanced Robotics, Istanbul, pp. 407–414 (2015)

  30. Desai, J.P., Ostrowski, J., Kumar, V.: Controlling formations of multiple mobile robots. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 4, pp. 2864–2869 (1998)

  31. Santos, V.G., Chaimowicz, L.: Cohesion and segregation in swarm navigation. Robotica 32 (2), 209–223 (2014)

    Article  Google Scholar 

  32. Inacio, F.R., Macharet, D.G., Chaimowicz, L.: United We Move: Decentralized Segregated Robotic Swarm Navigation In: The 13Th International Symposium on Distributed Autonomous Robotic Systems (DARS 2016) (2016)

  33. Kalman, R.E.: new approach to linear filtering and prediction problems. Trans. ASME - J. Basic Eng. 82(Series D), 35–45 (1960)

    Article  MathSciNet  Google Scholar 

  34. Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat, S., Zufferey, J.-C., Floreano, D., Martinoli, A.: The e-puck, a Robot Designed for Education in Engineering. Proc. 9th Conf. Auton. Robot Syst. Compet. 1(1), 59–65 (2009)

  35. Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: Ros: an Open-Source Robot Operating System. In: ICRA Workshop on Open Source Software (2009)

  36. Wagner, D., Schmalstieg, D.: Artoolkitplus for Pose Tracking on Mobile Devices. In: Computer Vision Winter Workshop (2007)

  37. Siegwart, R., Nourbakhsh, I.R.: Introduction to Autonomous Mobile Robots. The MIT Press, Cambridge (2004)

    Google Scholar 

  38. Ramaithitima, R., Whitzer, M., Bhattacharya, S., Kumar, V.: Automated creation of topological maps in unknown environments using a swarm of resource-constrained robots. IEEE Robot. Autom. Lett. 1 (2), 746–753 (2016)

    Article  Google Scholar 

  39. Rothermich, J., Ecemiş, M., Gaudiano, P.: Distributed localization and mapping with a robotic swarm. In: International Workshop on Swarm Robotics, pp. 58–69 (2004)

  40. Dirafzoon, A., Lobaton, E.: Topological mapping of unknown environments using an unlocalized robotic swarm. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 5545–5551 (2013)

  41. Ramachandran, R., Wilson, S., Berman, S.: A probabilistic approach to automated construction of topological maps using a stochastic robotic swarm. IEEE Robot. Autom. Lett. 2(2), 616–623 (2017)

    Article  Google Scholar 

  42. Ramachandran, R., Elamvazhuthi, K., Berman, S.: An optimal control approach to mapping gps-denied environments using a stochastic robotic swarm. In: Robotics Research. Springer, pp. 477–493 (2018)

  43. Ramachandran, R.K., Kakish, Z., Berman, S.: Information correlated lévy walk exploration and distributed mapping using a swarm of robots. IEEE Trans. Robot. 36(5), 1422–1441 (2020)

    Article  Google Scholar 

  44. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. In: 41st Annual Symposium on Foundations of Computer Science, pp. 454–463 (2000)

  45. Dirafzoon, A., et al: Mapping of unknown environments using minimal sensing from a stochastic swarm. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 3842–3849 (2014)

  46. Chaves, R., Rezeck, P., Chaimowicz, L.: SwarMap: Occupancy grid mapping with a robotic swarm. In: 19th International Conference on Advanced Robotics (ICAR), pp. 727–732 (2019)

  47. Elfes, A.: Using occupancy grids for mobile robot perception and navigation. Computer 22(6), 46–57 (1989)

    Article  Google Scholar 

  48. Thrun, S., Burgard, W., Fox, D.: Probabilistic robotics MIT press (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Chaimowicz.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by CAPES, CNPq, and Fapemig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pires, A.G., Rezeck, P.A.F., Chaves, R.A. et al. Cooperative Localization and Mapping with Robotic Swarms. J Intell Robot Syst 102, 47 (2021). https://doi.org/10.1007/s10846-021-01397-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-021-01397-z

Keywords

Navigation