Skip to main content
Log in

Autonomous Removing Foreign Objects for Power Transmission Line by Using a Vision-Guided Unmanned Aerial Manipulator

  • Regular paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper considers a problem that visual servo control for an aerial manipulator removes foreign objects of power transmission lines. A position-based visual servoing (PBVS) combing a foreign objects locating method based on the point cloud with a hierarchical task-priority control method is employed to drive the aerial manipulator to remove the foreign object. Firstly, the RGB-D camera mounted on the drone obtains the point cloud of the environment, and the foreign object will be localized by the detection and localization algorithm. Then, a new visual servo error is proposed to decouple linear speed and angular speed, allowing the aerial manipulator to grasp accurately in the dangerous environment. In addition, the redundant characteristics of the aerial manipulator will be fully used by the hierarchical task priority control scheme. Finally, experimental results of a drone equipped with a 4-DOF delta manipulator removing foreign objects of power transmission line are provided to demonstrate the effectiveness of the control method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhong, H., Miao, Z., Wang, Y., Mao, J., Li, L., Zhang, H., Chen, Y., Fierro, R.: A practical visual servo control for aerial manipulation using a spherical projection model. IEEE Trans. Ind. Electron. 67(12), 10564–10574 (2020)

    Article  Google Scholar 

  2. Jimenez-Cano, A., Braga, J., Heredia, G., Ollero, A.: Aerial manipulator for structure inspection by contact from the underside. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1879–1884 (2015)

  3. Tognon, M., Chávez, H.A.T., Gasparin, E., Sablé, Q., Bicego, D., Mallet, A., Lany, M., Santi, G., Revaz, B., Cortés, J., Franchi, A.: A truly-redundant aerial manipulator system with application to push-and-slide inspection in industrial plants. IEEE Robot. Autom. Lett. 4(2), 1846–1851 (2019)

    Article  Google Scholar 

  4. Ollero, A., Heredia, G., Franchi, A., Antonelli, G., Kondak, K., Sanfeliu, A., Viguria, A., Martinez-de Dios, J.R., Pierri, F., Cortes, J., Santamaria-Navarro, A., Trujillo Soto, M.A., Balachandran, R., Andrade-Cetto, J., Rodriguez, A.: The aeroarms project: Aerial robots with advanced manipulation capabilities for inspection and maintenance. IEEE Robot. Autom. Mag. 25(4), 12–23 (2018)

    Article  Google Scholar 

  5. Steich, K., Kamel, M., Beardsley, P., Obrist, M.K., Siegwart, R., Lachat, T.: Tree cavity inspection using aerial robots, in. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4856–4862 (2016)

  6. Ore, J.-P., Elbaum, S., Burgin, A., Detweiler, C.: Autonomous aerial water sampling. J. Field Robot. 32(8), 1095–1113 (2015)

    Article  Google Scholar 

  7. Kutia, J.R., Stol, K. A., Xu, W.: Aerial manipulator interactions with trees for canopy sampling. IEEE/ASME Trans. Mechatron. 23(4), 1740–1749 (2018)

    Article  Google Scholar 

  8. Tognon, M., Chávez, H.A.T., Gasparin, E., Sablé, Q., Bicego, D., Mallet, A., Lany, M., Santi, G., Revaz, B., Cortés, J., et al.: A truly-redundant aerial manipulator system with application to push-and-slide inspection in industrial plants. IEEE Robot. Autom. Lett. 4(2), 1846–1851 (2019)

    Article  Google Scholar 

  9. Cao, Y., Wang, H., Chang, Y., Zhang, L.: An entanglement-clearing robot for power transmission line with composite clearing tool, in. In: 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), pp. 591–596 (2015)

  10. Liang, Y., Yang, F.: Development and application of foreign objects removal device for high voltage transmission line. IOP Conference Series: Materials Science and Engineering 631, 042023 (2019). [Online]. Available: https://doi.org/10.1088/1757-899x/631/4/042023

    Article  Google Scholar 

  11. Liu, Y., Zhao, H., Chen, J., Tan, X., Li, C.: Research and application of remote removal of floating foreign objects on transmission lines based on fiber laser. In: 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 488–492. IEEE (2019)

  12. Zhao, G.Z., Wang, L D., Ni, W.L., Hua, Y.L., Weng, Y.M.: Design and application of a flamethrower robot in getting rid of foreign matter on power transmission lines. In: Applied Mechanics and Materials, vol. 341, pp. 640–645. Trans. Tech. Publ. (2013)

  13. Zhang, Y., Li, J., Li, C., Tao, Q., Xiong, X.: Development of foreign matter removal robot for overhead transmission lines. J. Phys.: Conference Series 1303, 012021 (2019)

    Google Scholar 

  14. Pounds, P.E., Bersak, D.R., Dollar, A.M.: Stability of small-scale UAV helicopters and quadrotors with added payload mass under PID control. Auton. Robot. 33(1-2), 129–142 (2012)

    Article  Google Scholar 

  15. Pounds, P.E.I., Dollar, A.M.: Stability of helicopters in compliant contact under pd-pid control. IEEE Trans. Robot. 30(6), 1472–1486 (2014)

    Article  Google Scholar 

  16. Fumagalli, M., Naldi, R., Macchelli, A., Forte, F., Keemink, A.Q., Stramigioli, S., Carloni, R., Marconi, L.: Developing an aerial manipulator prototype: Physical interaction with the environment. IEEE Robot. Autom. Mag. 21(3), 41–50 (2014)

    Article  Google Scholar 

  17. Tsukagoshi, H., Hamada, T., Watanabe, M., Iizuka, R., Dameitry, A.: Aerial manipulator aimed for door opening mission. In: 2014 IEEE International Symposium on Safety, Security, and Rescue Robotics (2014), pp. 1–2 (2014)

  18. Fanni, M., Khalifa, A.: A new 6-dof quadrotor manipulation system: Design, kinematics, dynamics, and control. IEEE/ASME Trans. Mechatron. 22(3), 1315–1326 (2017)

    Article  Google Scholar 

  19. Lippiello, V., Ruggiero, F.: Exploiting redundancy in cartesian impedance control of uavs equipped with a robotic arm. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3768–3773 (2012)

  20. Kobilarov, M.: Nonlinear trajectory control of multi-body aerial manipulators. J. Intell. Robot. Sys. 73(1), 679–692 (2014)

    Article  Google Scholar 

  21. Mellinger, D., Lindsey, Q., Shomin, M., Kumar, V.: Design, modeling, estimation and control for aerial grasping and manipulation. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2668–2673. IEEE (2011)

  22. Mersha, A. Y., Stramigioli, S., Carloni, R.: Exploiting the dynamics of a robotic manipulator for control of uavs. In: 2014 IEEE international conference on robotics and automation (ICRA), pp. 1741–1746. IEEE (2014)

  23. Khamseh, H.B., Janabi-Sharifi, F.: Ukf–based lqr control of a manipulating unmanned aerial vehicle. Unmanned Systems 5(03), 131–139 (2017)

    Article  Google Scholar 

  24. Lippiello, V., Cacace, J., Santamaria-Navarro, A., Andrade-Cetto, J., Trujillo, M.A., Esteves, Y.R.R., Viguria, A.: Hybrid visual servoing with hierarchical task composition for aerial manipulation. IEEE Robot. Autom. Lett. 1(1), 259–266 (2015)

    Article  Google Scholar 

  25. Santamaria-Navarro, A., Grosch, P., Lippiello, V., Solà, J., Andrade-Cetto, J.: Uncalibrated visual servo for unmanned aerial manipulation. IEEE/ASME Trans. Mechatron. 22(4), 1610–1621 (2017)

    Article  Google Scholar 

  26. Rafique, M.A., Lynch, A.F.: Output-feedback image-based visual servoing for multirotor unmanned aerial vehicle line following. IEEE Trans. Aerosp. Electron. Syst. 56(4), 3182–3196 (2020)

    Article  Google Scholar 

  27. Chaumette, F., Hutchinson, S.: Visual servo control. i. basic approaches. IEEE Robot. Autom. Mag. 13(4), 82–90 (2006)

    Article  Google Scholar 

  28. Hutchinson, S., Chaumette, F.: Visual servo control. ii. advanced approaches [tutorial]. IEEE Robot. Autom. Mag. 14(1), 109–118 (2007)

    Article  Google Scholar 

  29. Laiacker, M., Huber, F., Kondak, K.: High accuracy visual servoing for aerial manipulation using a 7 degrees of freedom industrial manipulator. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1631–1636. IEEE (2016)

  30. Carrillo, L.R.G., Colunga, G.R.F., Sanahuja, G., Lozano, R.: Quad rotorcraft switching control: An application for the task of path following. IEEE Trans. Control Syst. Technol. 22(4), 1255–1267 (2013)

    Google Scholar 

  31. Rondon, E., Garcia-Carrillo, L.-R., Fantoni, I.: Vision-based altitude, position and speed regulation of a quadrotor rotorcraft. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 628–633. IEEE (2010)

  32. Fiala, M.: Artag, a fiducial marker system using digital techniques. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 2, pp. 590–596. IEEE (2005)

  33. Wang, J., Olson, E.: Apriltag 2: Efficient and robust fiducial detection. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4193–4198. IEEE (2016)

  34. Zhang, T., Zhang, H., Li, H., Zhong, H., Tang, X., Wang, Y.: Catchit: Large-scale grasping combined with preliminary and precise localization method for aerial manipulator. In: 2020 Chinese Automation Congress (CAC), pp. 4792–4798. IEEE (2020)

  35. Mekki, H., Letaief, M.: Path planning for 3d visual servoing: For a wheeled mobile robot. In: 2013 International Conference on Individual and Collective Behaviors in Robotics (ICBR), pp. 86–91 (2013)

  36. Abadianzadeh, F., Derhami, V., Rezaeian, M.: Visual servoing control of robot manipulator in 3d space using fuzzy hybrid controller. In: 2016 4th International Conference on Robotics and Mechatronics (ICROM), pp. 61–65 (2016)

  37. Chiaverini, S.: Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators. IEEE Trans. Robot. Autom. 13(3), 398–410 (1997)

    Article  Google Scholar 

  38. Peters, J., Mistry, M., Udwadia, F., Nakanishi, J., Schaal, S.: A unifying framework for robot control with redundant dofs. Auton. Robot. 24(1), 1–12 (2008)

    Article  Google Scholar 

Download references

Funding

This work was supported by [Postdoctoral Research Foundation of China](Grant numbers [2020M682555] and [BX20200122]). The research leading to these results received funding from [Education and Scientific Research Project of Hunan] under Grant Agreement No [20C0083], Key R & D plan of Hunan Province under Grant Agreement No [2020SK3007] and Changsha Science and Technology Plan under Grant Agreement No [kh2003026].

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Mr. Tianlin Zhang, Mr. Hongwen Li. The first draft of the manuscript was written by Mr. Tianlin Zhang and Ms. Ling Li. All authors read and approved the manuscript. The list of authors is the following:

Corresponding author

Correspondence to Hang Zhong.

Ethics declarations

Consent to participate

All of the authors declare the consent to participate in this manuscript.

Consent for Publication

All of the authors declare the consent to publish this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MP4 28.3 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Zhang, T., Zhong, H. et al. Autonomous Removing Foreign Objects for Power Transmission Line by Using a Vision-Guided Unmanned Aerial Manipulator. J Intell Robot Syst 103, 23 (2021). https://doi.org/10.1007/s10846-021-01482-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-021-01482-3

Keywords

Navigation