Skip to main content
Log in

Cooperative Sensor-based Selective Graph Exploration Strategy for a Team of Quadrotors

  • Regular paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper proposes an exploration strategy in unknown environments for a team of quadrotor Unmanned Aerial Vehicles (UAVs). Based on the frontier information, the proposed strategy builds a roadmap of the explored area in form of a Sensor-based Selective Graph (SSG) using simple data trees of the frontier and the hub node only. In particular, the frontier data tree is utilized to consider the adjacent frontier sectors as one frontier sector, and the next target node is generated maximizing the coverage of frontiers at each movement of quadrotors. In addition, to expand the proposed strategy to the three dimensional (3D) workspace with quadrotors, a Multiple Flight Levels (MFL) approach is proposed to increase the efficiency of the exploration. Moreover, when a quadrotor reaches a dead end where no frontier exists, the efficient backtracking algorithm chooses the best path to backtrack efficiently with a graph map provided by the SSG. With these contributions, we successfully develop the frontier-based exploration strategy for multiple quadrotors, and performance of the overall approach is validated by numerical simulations and experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Doroodgar, B., Ficocelli, M., Mobedi, B., Nejat, G.: The search for survivors: Cooperative human-robot interaction in search and rescue environments using semi-autonomous robots. In: Robotics and Automation (ICRA), 2010 IEEE International Conference on, pp 2858–2863. IEEE (2010)

  2. Nagatani, K., Kiribayashi, S., Okada, Y., Tadokoro, S., Nishimura, T., Yoshida, T., Koyanagi, E., Hada, Y.: Redesign of rescue mobile robot quince. IEEE (2011)

  3. Sugiyama, H., Tsujioka, T., Murata, M.: Real-time exploration of a multi-robot rescue system in disaster areas. Adv. Robot. 27(17), 1313–1323 (2013)

    Article  Google Scholar 

  4. Olson, E., Strom, J., Morton, R., Richardson, A., Ranganathan, P., Goeddel, R., Bulic, M., Crossman, J., Marinier, B.: Progress toward multi-robot reconnaissance and the magic 2010 competition. J. Field Robot. 29(5), 762–792 (2012)

    Article  Google Scholar 

  5. Korpela, C., Root, P., Kim, J., Wilkerson, S., Gadsden, S.A.: A framework for autonomous and continuous aerial intelligence, surveillance, and reconnaissance operations. In: Airborne Intelligence, Surveillance, Reconnaissance (ISR) Systems and Applications XIII, vol. 9828, International Society for Optics and Photonics, p. 982803 (2016)

  6. Quann, M., Ojeda, L., Smith, W., Rizzo, D., Castanier, M., Barton, K.: An energy-efficient method for multi-robot reconnaissance in an unknown environment. In: American Control Conference (ACC), 2017, IEEE, pp. 2279–2284 (2017)

  7. Amigoni, F., Caglioti, V.: An information-based exploration strategy for environment mapping with mobile robots. Robot. Auton. Syst. 58(5), 684–699 (2010)

    Article  Google Scholar 

  8. Butzke, J., Likhachev, M.: Planning for multi-robot exploration with multiple objective utility functions. In: Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on, pp 3254–3259. IEEE (2011)

  9. Senthilkumar, K., Bharadwaj, K.: Multi-robot exploration and terrain coverage in an unknown environment. Robot. Auton. Syst. 60(1), 123–132 (2012)

    Article  Google Scholar 

  10. Keidar, M., Kaminka, G.A.: Efficient frontier detection for robot exploration. Int. J. Robot. Res. 33(2), 215–236 (2014)

    Article  Google Scholar 

  11. Yamauchi, B.: A frontier-based approach for autonomous exploration. In: Proceedings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA), pp 146–151. IEEE (1997)

  12. Oriolo, G., Vendittelli, M., Freda, L., Troso, G.: The srt method: Randomized strategies for exploration. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), vol. 5, IEEE, pp. 4688–4694 (2004)

  13. Freda, L., Oriolo, G.: Frontier-based probabilistic strategies for sensor-based exploration. In: Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on, pp 3881–3887. IEEE (2005)

  14. Franchi, A., Freda, L., Oriolo, G., Vendittelli, M.: The sensor-based random graph method for cooperative robot exploration. IEEE/ASME Trans. Mechatron. 14(2), 163–175 (2009)

    Article  Google Scholar 

  15. Cao, Y.U., Fukunaga, A.S., Kahng, A.B., Meng, F.: Cooperative mobile robotics: Antecedents and directions. In: Intelligent Robots and Systems 95.’Human Robot Interaction and Cooperative Robots’, Proceedings. 1995 IEEE/RSJ International Conference on, vol. 1, IEEE, pp. 226–234 (1995)

  16. Khamis, A., Hussein, A., Elmogy, A.: Multi-robot task allocation: A review of the state-of-the-art. In: Cooperative Robots and Sensor Networks 2015, Springer, pp. 31–51 (2015)

  17. Ström, D.P., Bogoslavskyi, I., Stachniss, C.: Robust exploration and homing for autonomous robots. Robot. Auton. Syst. 90, 125–135 (2017)

    Article  Google Scholar 

  18. Nelson, E., Corah, M., Michael, N.: Environment model adaptation for mobile robot exploration. Auton. Robot. 42(2), 257–272 (2018)

    Article  Google Scholar 

  19. Francis, G., Ott, L., Marchant, R., Ramos, F.: Occupancy map building through bayesian exploration. Int. J. Robot. Res. 38(7), 769–792 (2019)

    Article  Google Scholar 

  20. Shrestha, R., Tian, F. -P., Feng, W., Tan, P., Vaughan, R.: Learned map prediction for enhanced mobile robot exploration. IEEE (2019)

  21. Kim, D., Carballo, D., Di Carlo, J., Katz, B., Bledt, G., Lim, B., Kim, S.: Vision aided dynamic exploration of unstructured terrain with a small-scale quadruped robot. IEEE (2020)

  22. Zeng, T., Si, B.: Mobile robot exploration based on rapidly-exploring random trees and dynamic window approach. IEEE, ICCAR (2019)

  23. Zhu, C., Ding, R., Lin, M., Wu, Y.: A 3d frontier-based exploration tool for mavs. IEEE (2015)

  24. Aguilar, W.G., Rodríguez, G.A., Álvarez, L., Sandoval, S., Quisaguano, F., Limaico, A.: Visual slam with a rgb-d camera on a quadrotor uav using on-board processing. In: International Work-Conference on Artificial Neural Networks, Springer, pp. 596–606 (2017)

  25. Aguilar, W.G., Rodríguez, G.A., Álvarez, L., Sandoval, S., Quisaguano, F., Limaico, A.: Real-time 3d modeling with a rgb-d camera and on-board processing. In: International Conference on Augmented Reality, Virtual Reality and Computer Graphics, Springer, pp. 410–419 (2017)

  26. Kaufman, E., Takami, K., Ai, Z., Lee, T.: Autonomous quadrotor 3d mapping and exploration using exact occupancy probabilities. In: 2018 Second IEEE International Conference on Robotic Computing (IRC), IEEE, pp. 49–55 (2018)

  27. Sugihara, K.: Approximation of generalized voronoi diagrams by ordinary voronoi diagrams. CVGIP: Graph. Models Image Process. 55(6), 522–531 (1993)

    Google Scholar 

  28. Choset, H., Burdick, J.: Sensor-based exploration: The hierarchical generalized voronoi graph. Int. J. Rob. Res. 19(2), 96–125 (2000)

    Article  Google Scholar 

  29. Warren, C.W.: Global path planning using artificial potential fields. In: Robotics and Automation, 1989. Proceedings. 1989 IEEE International Conference on, pp 316–321. IEEE (1989)

  30. Koren, Y., Borenstein, J.: Potential field methods and their inherent limitations for mobile robot navigation. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), IEEE, pp. 1398–1404 (1991)

  31. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

    Article  Google Scholar 

  32. Kim, J., Seong, K.J., Kim, H.J.: An efficient backtracking strategy for frontier method in sensor-based random tree. In: Control, Automation and Systems (ICCAS), 2012 12th International Conference on, IEEE, pp. 970–974 (2012)

  33. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische mathematik 1 (1), 269–271 (1959)

    Article  MathSciNet  Google Scholar 

  34. Wang, H., Yu, Y., Yuan, Q.: Application of dijkstra algorithm in robot path-planning. In: 2011 Second International Conference on Mechanic Automation and Control Engineering, IEEE, pp. 1067–1069 (2011)

  35. Kim, J., Bonadies, S., Lee, A., Gadsden, S.A.: A cooperative exploration strategy with efficient backtracking for mobile robots. In: IEEE International Symposium on Robotics and Intelligent Sensors (IRIS), pp 104–110. IEEE (2017)

  36. Goodman, J.M., Kim, J., Gadsden, S.A., Wilkerson, S.A.: System and mathematical modeling of quadrotor dynamics. In: Unmanned Systems Technology XVII, Vol. 9468, International Society for Optics and Photonics, p. 94680R (2015)

  37. Kim, J., Wilkerson, S.A., Gadsden, S.A.: Comparison of gradient methods for gain tuning of a pd controller applied on a quadrotor system. In: Unmanned Systems Technology XVIII, Vol. 9837, International Society for Optics and Photonics, p. 98370V (2016)

  38. Optitrack: Prime 13W. https://optitrack.com/products/prime-13w/ (2021)

  39. Bitcraze: Crazyflie 2.0. https://www.bitcraze.io/crazyflie-2/ (2021)

  40. Preiss, J.A., Honig, W., Sukhatme, G.S., Ayanian, N.: Crazyswarm: A large nano-quadcopter swarm. In: Robotics and Automation (ICRA), 2017 IEEE International Conference on, pp 3299–3304. IEEE (2017)

  41. Bitcraze: Crazyradio PA. https://www.bitcraze.io/crazyradio-pa/ (2021)

Download references

Acknowledgment

The authors would like to thank Dr. George E. Piper, U.S. Naval Academy, Annapolis, MD, for his helpful advice for this research. Also, the authors would like to thank Esther H. Kim, Johns Hopkins Medicine, Baltimore, MD, for her assistance in editing. This work was partially supported by NACA #58-8042-6-033 from the USDA National Institute of Food and Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinho Kim.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jinho Kim is currently a Postdoctoral Research Fellow at the Robotics Research Center at the United States Military Academy, West Point.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Eggleton, C.D., Wilkerson, S.A. et al. Cooperative Sensor-based Selective Graph Exploration Strategy for a Team of Quadrotors. J Intell Robot Syst 103, 24 (2021). https://doi.org/10.1007/s10846-021-01485-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-021-01485-0

Keywords

Navigation