Skip to main content
Log in

Computable Heyting Algebras with Distinguished Atoms and Coatoms

  • Published:
Journal of Logic, Language and Information Aims and scope Submit manuscript

Abstract

The paper studies Heyting algebras within the framework of computable structure theory. We prove that the class K containing all Heyting algebras with distinguished atoms and coatoms is complete in the sense of the work of Hirschfeldt et al. (Ann Pure Appl Logic 115(1-3):71-113, 2002). This shows that the class K is rich from the computability-theoretic point of view: for example, every possible degree spectrum can be realized by a countable structure from K. In addition, there is no simple syntactic characterization of computably categorical members of K (i.e., structures from K possessing a unique computable copy, up to computable isomorphisms).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alaev, P. E. (2012). Computably categorical Boolean algebras enriched by ideals and atoms. Annals of Pure and Applied Logic, 163(5), 485–499.

    Article  Google Scholar 

  • Ash, C. J., & Knight, J. F. (2000). Computable structures and the hyperarithmetical hierarchy, studies in Logic and the foundations of mathematics. Amsterdam: Elsevier Science B.V.

    Google Scholar 

  • Balbes, R., & Dwinger, P. (1974). Distributive lattices. Columbia: Univ. Missouri Press.

    Google Scholar 

  • Bazhenov, N. (2016). Categoricity spectra for polymodal algebras. Studia Logica, 104(6), 1083–1097.

    Article  Google Scholar 

  • Bazhenov, N. (2019). Computable contact algebras. Fundamenta Informaticae, 167(4), 257–269.

    Article  Google Scholar 

  • Bazhenov, N. (2021a). On computability-theoretic properties of Heyting algebras. In: Ghosh, S., Ramanujam, R. (eds) ICLA 2021 Proceedings 9th Indian conference on logic and its applications. March 4–7, 2021, pp 25–29

  • Bazhenov, N. A. (2017). Effective categoricity for distributive lattices and Heyting algebras. Lobachevskii Journal of Mathematics, 38(4), 600–614.

    Article  Google Scholar 

  • Bazhenov, N. A. (2021). Categoricity spectra of computable structures. Journal of Mathematical Sciences, 256(1), 34–50.

    Article  Google Scholar 

  • Downey, R. G., Kach, A. M., Lempp, S., Lewis-Pye, A. E. M., Montalbán, A., & Turetsky, D. D. (2015). The complexity of computable categoricity. Advances in Mathematics, 268, 423–466.

    Article  Google Scholar 

  • Ershov, Y. L., & Goncharov, S. S. (2000). Constructive models. New York: Kluwer Academic/Plenum Publishers.

    Book  Google Scholar 

  • Eršov, J. L. (1977). Theorie der Numerierungen III. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 23(19–24), 289–371.

    Google Scholar 

  • Esakia, L. (2019). Heyting algebras. In G. Bezhanishvili & W. H. Holliday (Eds.), Duality theory trends in logic. Cham: Springer.

    Google Scholar 

  • Fokina, E. B., Harizanov, V., & Melnikov, A. (2014). Computable model theory. Lecture notes in logic. In R. Downey (Ed.), Turing’s legacy: Developments from turing’s ideas in logic (pp. 124–194). Cambridge University Press.

  • Franklin, J. N. Y. (2017). Strength and weakness in computable structure theory. In A. R. Day, M. R. Fellows, N. Greenberg, B. Khoussainov, A. G. Melnikov, & F. A. Rosamond (Eds.), Computability and complexity (pp. 302–323). Springer.

  • Fröhlich, A., & Shepherdson, J. C. (1956). Effective procedures in field theory. Philosophical Transactions of the Royal Society of London Ser A, 248(950), 407–432.

    Article  Google Scholar 

  • Goncharov, S. S. (1980). Problem of the number of non-self-equivalent constructivizations. Algebra and Logic, 19(6), 401–414.

    Article  Google Scholar 

  • Goncharov, S. S., & Dzgoev, V. D. (1980). Autostability of models. Algebra and Logic, 19(1), 28–37.

    Article  Google Scholar 

  • Goncharov, S. S., Lempp, S., & Solomon, R. (2003). The computable dimension of ordered abelian groups. Advances in Mathematics, 175(1), 102–143.

    Article  Google Scholar 

  • Harizanov, V. S. (1998). Pure computable model theory. Handbook of recursive mathematics. Studies in logic and the foundations of mathematics (pp. 3–114). Amsterdam: Elsevier.

    Google Scholar 

  • Hirschfeldt, D. R., Khoussainov, B., Shore, R. A., & Slinko, A. M. (2002). Degree spectra and computable dimensions in algebraic structures. Annals of Pure and Applied Logic, 115(1–3), 71–113.

    Article  Google Scholar 

  • Jockusch, C. G., Jr., & Soare, R. I. (1994). Boolean algebras, stone spaces, and the iterated turing jump. Journal of Symbolic Logic, 59(4), 1121–1138.

    Article  Google Scholar 

  • Kalimullin, I. S., Selivanov, V. L., & Frolov, A. N. (2021). Degree spectra of structures. Journal of Mathematical Sciences, 256(2), 143–159.

    Article  Google Scholar 

  • Khoussainov, B., & Kowalski, T. (2012). Computable isomorphisms of Boolean algebras with operators. Studia Logica, 100(3), 481–496.

    Article  Google Scholar 

  • Knight, J. F. (1986). Degrees coded in jumps of orderings. Journal of Symbolic Logic, 51(4), 1034–1042.

    Article  Google Scholar 

  • Knight, J. F., & Stob, M. (2000). Computable Boolean algebras. Journal of Symbolic Logic, 65(4), 1605–1623.

    Article  Google Scholar 

  • Kogabaev, N. (2017). Freely generated projective planes with finite computable dimension. Algebra and Logic, 55(6), 461–484.

    Article  Google Scholar 

  • Mal’tsev, A. I. (1961). Constructive algebras. I. Russian Mathematical Surveys, 16(3), 77–129.

    Article  Google Scholar 

  • Mal’tsev, A. I. (1962). On recursive abelian groups. Soviet Mathematics Doklady, 3, 1431–1434.

    Google Scholar 

  • Miller, R. (2005). The computable dimension of trees of infinite height. Journal of Symbolic Logic, 70(1), 111–141.

    Article  Google Scholar 

  • Miller, R., Poonen, B., Schoutens, H., & Shlapentokh, A. (2018). A computable functor from graphs to fields. Journal of Symbolic Logic, 83(1), 326–348.

    Article  Google Scholar 

  • Montalbán, A. (2008). On the triple jump of the set of atoms of a Boolean algebra. Proceedings of the American Mathematical Society, 136(7), 2589–2595.

    Article  Google Scholar 

  • Montalbán, A. (2014). Computability theoretic classifications for classes of structures. In: Jang, S. Y., Kim, Y. R., Lee, D., Yie, I. (eds) Proceedings of the international congress of mathematicians — Seoul 2014. Vol. II, Kyung Moon Sa, Seoul, pp. 79–101

  • Remmel, J. B. (1981). Recursive Boolean algebras with recursive atoms. Journal of Symbolic Logic, 46(3), 595–616.

    Article  Google Scholar 

  • Remmel, J. B. (1981). Recursive isomorphism types of recursive Boolean algebras. Journal of Symbolic Logic, 46(3), 572–594.

    Article  Google Scholar 

  • Remmel, J. B. (1981). Recursively categorical linear orderings. Proceedings of the American Mathematical Society, 83(2), 387–391.

    Article  Google Scholar 

  • Remmel, J. B. (1989). Recursive Boolean algebras. In J. D. Monk & R. Bonnet (Eds.), Handbook of Boolean algebras (pp. 1097–1165). Amsterdam: North-Holland.

    Google Scholar 

  • Richter, L. J. (1977). Degrees of unsolvability of models. PhD thesis, University of Illinois at Urbana-Champaign

  • Richter, L. J. (1981). Degrees of structures. Journal of Symbolic Logic, 46(4), 723–731.

    Article  Google Scholar 

  • Soare, R. I. (2016). Turing computability. Theory and applications. Berlin: Springer.

    Google Scholar 

  • Turlington, A. (2010). Computability of Heyting algebras and distributive lattices. PhD thesis, University of Connecticut, Storrs

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Bazhenov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work was supported by the Ministry of Education and Science of the Republic of Kazakhstan, Grant AP08856493 “Positive graphs and computable reducibility on them as mathematical model of databases”. The author is also partially supported by RFBR, project number 20-31-70006.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazhenov, N. Computable Heyting Algebras with Distinguished Atoms and Coatoms. J of Log Lang and Inf 32, 3–18 (2023). https://doi.org/10.1007/s10849-022-09371-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10849-022-09371-0

Keywords

Navigation