Skip to main content
Log in

Supervised Texture Classification Using Characteristic Generalized Gaussian Density

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Generalized Gaussian density (GGD) is a well established model for high frequency wavelet subbands and has been applied in texture image retrieval with very good results. In this paper, we propose to adopt the GGD model in a supervised learning context for texture classification. Given a training set of GGDs, we define a characteristic GGD (CGGD) that minimizes its Kullback-Leibler distance (KLD) to the training set. We present mathematical analysis that proves the existence of our characteristic GGD and provide a sufficient condition for the uniqueness of CGGD, thus establishing a theoretical basis for its use. Our experimental results show that the proposed CGGD signature together with the use of KLD has a very promising recognition performance compared with existing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Do, M.N., Vetterli, M.: Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance. IEEE Trans. Image Process. 11(2), 146–158 (2002)

    Article  MathSciNet  Google Scholar 

  2. Sharifi, K., Leon-Garcia, A.: Estimation of shape parameter for generalized Gaussian distribution in subband decomposition of video. IEEE Trans. Circuits Syst. Video Technol. 5(1), 52–56 (1995)

    Article  Google Scholar 

  3. Unser, M.: Texture classification and segmentation using wavelet frames. IEEE Trans. Image Process. 4(2), 1549–1560 (1995)

    Article  Google Scholar 

  4. Amet, A.L., Ertuzun, A., Erqil, A.: Texture defect detection using subband domain co-occurrence matrices. In: Proceedings of IEEE Southeast Symp. for Image Analysis and Interpretation, 6–7 April 1998, pp. 976–979 (1998)

  5. Fan, G.L., Xia, X.G.: On context-based Bayesian image segmentation: joint multi-context and multiscale approach and wavelet-domain hidden Markov models. In: Proceedings of the 35th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 4–7 November 2001

  6. Fan, G.L., Xia, X.G.: Maximum likelihood texture analysis and classification using wavelet-domain hidden Markov models. In: Proceedings of the 34th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 29 October–1 November 2000

  7. Aiazzi, B., Alparone, L., Baronti, S.: Estimation based on entropy matching for generalized Gaussian PDF modeling. IEEE Signal Process. Lett. 6(6), 138–140 (1999)

    Article  Google Scholar 

  8. Mallat, S.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)

    Article  MATH  Google Scholar 

  9. Aujol, J.F., Aubert, G., Blanc-Feraud, L.: Wavelet-based level set evolution for classification of textured images. IEEE Trans. Image Process. 12(12), 1634–1641 (2003)

    Article  MathSciNet  Google Scholar 

  10. Moulin, P., Liu, J.: Analysis of multiresolution image denoising schemes using generalized Gaussian and complexity prior. IEEE Trans. Inf. Theory 45(3), 909–919 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Van de Wouwer, G., Scheunders, P., Van Dyck, D.: Statistical texture characterization from discrete wavelet representation. IEEE Trans. Image Process. 8(4), 592–598 (1999)

    Article  Google Scholar 

  12. Weszka, J.S., Dyer, C.R., Rosenfeld, A.: A comparative study of texture measures for terrain classification. IEEE Trans. Syst. Man. Cybern. 6, 269–285 (1976)

    MATH  Google Scholar 

  13. Conners, R.W., Harlow, C.A.: A theoretical comparison of texture algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 2, 204–221 (1980)

    Article  MATH  Google Scholar 

  14. Randen, T., Husoy, J.H.: Filtering for texture classification: a comparative study. IEEE Trans. Pattern Anal. Mach. Intell. 21(4), 291–310 (1999)

    Article  Google Scholar 

  15. Liu, X., Wang, D.: Texture classification using spectral histograms. IEEE Trans. Image Process. 12(6), 661–670 (2003)

    Article  Google Scholar 

  16. Laine, A., Fan, J.: Texture classification by wavelet packet signatures. IEEE Trans. Pattern Anal. Mach. Intell. 15(11), 1186–1191 (1993)

    Article  Google Scholar 

  17. JPEG2000 Part 2 Final Committee Draft, ISO/IEC JTC1/SC29/WC1 N2000, December 2000

  18. Choy, S.K., Tong, C.S.: Supervised learning using characteristic generalized Gaussian density and its application to Chinese materia medica identification. In: Qian, T., Vai, M.I., Yuesheng, X. (eds.) Wavelet Analysis and Applications. Applied and Numerical Harmonic Analysis Series, pp. 443–452. Springer, Basel (2006)

    Google Scholar 

  19. Varanasi, M.K., Aazhang, B.: Parametric generalized Gaussian density estimation. J. Acoust. Soc. Am. 86, 1404–1415 (1989)

    Article  Google Scholar 

  20. Pi, M., Tong, C.S., Choy, S.K., Zhang, H.: A fast and effective model for wavelet subband histograms and its application in texture image retrieval. IEEE Trans. Image Process. 15(10), 3078–3088 (2006)

    Article  Google Scholar 

  21. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1970)

    Google Scholar 

  22. Spiegel, M.R.: Mathematical Handbook of Formulas and Tables. McGraw-Hill, Singapore (1990)

    Google Scholar 

  23. Srivastava, A., Liu, X., Grenander, U.: Universal analytical forms for modeling image probabilities. IEEE Trans. Pattern Anal. Mach. Intell. 24(9), 1200–1214 (2002)

    Article  Google Scholar 

  24. Meignen, S., Meignen, H.: On the modeling of small sample distributions with generalized Gaussian density in a maximum likelihood framework. IEEE Trans. Image Process. 15(6), 1647–1652 (2006)

    Article  MathSciNet  Google Scholar 

  25. Tuceryan, M., Jain, A.K.: Texture analysis. In: Chen, C.H., Lau, L.F., Wang, P.S.P. (eds.) Handbook Pattern Recognition and Computer Vision, pp. 235–276. World Scientific, Singapore (1993), Chap. 2

    Google Scholar 

  26. Chang, T., Kuo, C.C.J.: Texture analysis and classification with tree-structured wavelet transform. IEEE Trans. Image Process. 2(4), 429–441 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siu-Kai Choy.

Additional information

This research is supported by HKBU’s Centre for Mathematical Imaging and Vision, HKBU Faculty Research Grant, and a CERG Grant

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choy, SK., Tong, CS. Supervised Texture Classification Using Characteristic Generalized Gaussian Density. J Math Imaging Vis 29, 35–47 (2007). https://doi.org/10.1007/s10851-007-0023-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-007-0023-8

Keywords

Navigation