Skip to main content
Log in

Error Analysis in Homography Estimation by First Order Approximation Tools: A General Technique

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

This paper shows how to analytically calculate the statistical properties of the errors in estimated parameters. The basic tools to achieve this aim include first order approximation/perturbation techniques, such as matrix perturbation theory and Taylor Series. This analysis applies for a general class of parameter estimation problems that can be abstracted as a linear (or linearized) homogeneous equation.

Of course there may be many reasons why one might which to have such estimates. Here, we concentrate on the situation where one might use the estimated parameters to carry out some further statistical fitting or (optimal) refinement. In order to make the problem concrete, we take homography estimation as a specific problem. In particular, we show how the derived statistical errors in the homography coefficients, allow improved approaches to refining these coefficients through subspace constrained homography estimation (Chen and Suter in Int. J. Comput. Vis. 2008).

Indeed, having derived the statistical properties of the errors in the homography coefficients, before subspace constrained refinement, we do two things: we verify the correctness through statistical simulations but we also show how to use the knowledge of the errors to improve the subspace based refinement stage. Comparison with the straightforward subspace refinement approach (without taking into account the statistical properties of the homography coefficients) shows that our statistical characterization of these errors is both correct and useful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, P.: An investigation of statistical aspects of linear subspace analysis for computer vision applications. Ph.D. Thesis, Monash University (2004)

  2. Chen, P., Suter, D.: An analysis of linear subspace approaches for computer vision and pattern recognition. Int. J. Comput. Vis. 68(1), 83–106 (2006)

    Article  Google Scholar 

  3. Chen, P., Suter, D.: A bilinear approach to the parameter estimation of a general heteroscedastic linear system, with application to conic fitting. J. Math. Imaging Vis. 28(3), 191–208 (2007)

    Article  MathSciNet  Google Scholar 

  4. Chen, P., Suter, D.: Rank constraints for homographies over two views: Revisiting the rank four constraint. Int J. Comput. Vis. (2008, to appear)

  5. Chernov, N.: On the convergence of fitting algorithms in computer vision. J. Math. Imaging Vis. 27(3), 231–239 (2007)

    Article  MathSciNet  Google Scholar 

  6. Chernov, N., Lesort, C.: Statistical efficiency of curve fitting algorithms. Comput. Stat. Data Anal. 47(4), 713–G728 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chojnacki, W., Brooks, M.J., van den Hengel, A., Gawley, D.: On the fitting of surfaces to data with covariances. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1294–1303 (2000)

    Article  Google Scholar 

  8. Chojnacki, W., Brooks, M.J., van den Hengel, A., Gawley, D.: A new approach to constrained parameter estimation applicable to some computer vision problems. Image Vis. Comput. 22(2), 85–91 (2004)

    Article  Google Scholar 

  9. Chojnacki, W., Brooks, M.J., van den Hengel, A., Gawley, D.: From fns to heiv: a link between two vision parameter estimation methods. IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 264–268 (2004)

    Article  Google Scholar 

  10. Chum, O., Pajdla, T., Sturm, P.: The geometric error for homographies. Comput. Vis. Image Underst. 97(1), 86–102 (2005)

    Article  Google Scholar 

  11. Chum, O., Werner, T., Matas, J.: Two-view geometry estimation unaffected by a dominant plane. In: Proc. Conf. Computer Vision and Pattern Recognition (1), pp. 772–779 (2005)

  12. Golub, G.H., Loan, C.F.V.: Matrix Computations, 3nd edn. Johns Hopkins Press, Baltimore (1996)

    MATH  Google Scholar 

  13. Haralick, R.M.: Propagating covariance in computer vision. In: Proc. of 12th ICPR, pp. 493–498 (1994)

  14. Haralick, R.M.: Propagating covariance in computer vision. Int. J. Pattern Recogn. Artif. Intell. 10(5), 561–572 (1996)

    Article  Google Scholar 

  15. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge Univ Press, Cambridge (2003)

    Google Scholar 

  16. Jain, A.K., Mao, J., Duin, R.: Statistical pattern recognition: A review. IEEE Trans. Pattern Anal. Mach. Intell. 22(1), 4–37 (2000)

    Article  Google Scholar 

  17. Kanatani, K.: Unbiased estimation and statistical analysis of 3-d rigid motion from two views. IEEE Trans. Pattern Anal. Mach. Intell. 15(1), 37–50 (1993)

    Article  MathSciNet  Google Scholar 

  18. Kanatani, K.: Statistical bias of conic fitting and renormalization. IEEE Trans. Pattern Anal. Mach. Intell. 16(3), 320–326 (1994)

    Article  MATH  Google Scholar 

  19. Kanatani, K.: Statistical Optimization for Geometric Computation: Theory and Practice. Elsevier, Amsterdam (1996)

    MATH  Google Scholar 

  20. Kanatani, K.: Uncertainty modeling and model selection for geometric inference. IEEE Trans. Pattern Anal. Mach. Intell. 26(10), 1307–1319 (2004)

    Article  Google Scholar 

  21. Kanatani, K.: Statistical optimization for geometric fitting: Theoretical accuracy bound and high order error analysis. Int. J. Comput. Vis. (2008, in print)

  22. Leedan, Y., Meer, P.: Heteroscedastic regression in computer vision: Problems with bilinear constraint. Int. J. Comput. Vis. 37(2), 127–150 (2000)

    Article  MATH  Google Scholar 

  23. Manton, J.H., Mahony, R., Hua, Y.: The geometry of weighted low-rank approximations. IEEE Trans. Signal Process. 51(2), 500–514 (2003)

    Article  MathSciNet  Google Scholar 

  24. Mühlich, M., Mester, R.: A considerable improvement in non-iterative homography estimation using tls and equilibration. Pattern Recogn. Lett. 22(11), 1181–1189 (2001)

    Article  Google Scholar 

  25. Mulich, M., Mester, R.: The role of total least squares in motion analysis. In: ECCV, pp. 305–321 (1998)

  26. Mulich, M., Mester, R.: Subspace methods and equilibration in computer vision. In: Scandinavian Conference on Image Analysis (2001)

  27. Mulich, M., Mester, R.: Unbiased errors-in-variables estimation using generalized eigensystem analysis. In: ECCV Workshop SMVP, pp. 38–49 (2004)

  28. Nadabar, S.G., Jain, A.K.: Parameter estimation in Markov random field contextual models using geometric models of objects. IEEE Trans. Pattern Anal. Mach. Intell. 18(3), 326–329 (1996)

    Article  Google Scholar 

  29. Nayak, A., Trucco, E., Thacker, N.A.: When are simple ls estimators enough? An empirical study of ls, tls, and gtls. Int. J. Comput. Vis. 68(2), 203–216 (2006)

    Article  Google Scholar 

  30. Stewart, G.W., Sun, J.G.: Matrix Perturbation Theory. Academic Press, San Diego (1990)

    MATH  Google Scholar 

  31. Taubin, G.: Estimation of planar curves, surfaces, and nonplanar space curves defined by implicit equations with applications to edge and range image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 13(11), 1115–1138 (1991)

    Article  Google Scholar 

  32. Wilkinson, J.H.: The Algebraic Eigenvalue Problem. Clarendon, Oxford (1965)

    MATH  Google Scholar 

  33. Zelnik-Manor, L., Irani, M.: Multi-view subspace constraints on homographies. In: Proc. Int’l Conf. Computer Vision, pp. 710–715 (1999)

  34. Zelnik-Manor, L., Irani, M.: Multi-view subspace constraints on homographies. IEEE Trans. Pattern Anal. Mach. Intell. 24(2), 214–223 (2002)

    Article  Google Scholar 

  35. Zhang, Z.: Parameter estimation techniques: A tutorial with application to conic fitting. Image Vis. Comput. 15, 59–76 (1997)

    Article  Google Scholar 

  36. Zhang, Z.: Determining the epipolar geometry and its uncertainty: A review. Int. J. Comput. Vis. 27(2), 161–195 (1998)

    Article  Google Scholar 

  37. Zhang, Z.: On the optimization criteria used in two-view motion analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(7), 717–729 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, P., Suter, D. Error Analysis in Homography Estimation by First Order Approximation Tools: A General Technique. J Math Imaging Vis 33, 281–295 (2009). https://doi.org/10.1007/s10851-008-0113-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-008-0113-2

Keywords

Navigation