Skip to main content
Log in

General Adaptive Neighborhood-Based Pretopological Image Filtering

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

This paper introduces pretopological image filtering in the context of the General Adaptive Neighborhood Image Processing (GANIP) approach. Pretopological filters act on gray level image while satisfying some topological properties. The GANIP approach enables to get an image representation and mathematical structure for adaptive image processing and analysis. Then, the combination of pretopology and GANIP leads to efficient image operators. They enable to process images while preserving region structures without damaging image transitions. More precisely, GAN-based pretopological filters and GAN-based viscous pretopological filters are proposed in this paper. The viscous notion enables to adjust the filtering activity to the image gray levels. These adaptive filters are evaluated through several experiments highlighting their efficiency with respect to the classical operators. They are practically applied in both the biomedical and material application areas for image restoration, image background subtraction and image enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Athanaze, Guy: De la théorie des possibilités à la prétopologie et la morphologie mathématique: nouveaux concepts et méthodologies. Ph.D. thesis, INSA, Lyon (2000)

  2. Belmandt, Z.: Manuel de prétopologie et ses applications. Hermès, Paris (1993)

    MATH  Google Scholar 

  3. Bertrand, G.: On topological watersheds. J. Math. Imaging Vis. 22(2), 217–230 (2005)

    Article  MathSciNet  Google Scholar 

  4. Bonnevay, S.: Pretopological operators for gray-level image analysis. Studia Inform. Universalis 7(1), 175–195 (2009)

    Google Scholar 

  5. Cech, E.: Topological Spaces. Wiley, New York (1966)

    MATH  Google Scholar 

  6. Choquet, G.: Topology. Academic Press, San Diego (1966)

    MATH  Google Scholar 

  7. Couprie, M., Bezerra, F.N., Bertrand, G.: Topological operators for grayscale image processing. J. Electron. Imaging 10(4), 1003–1015 (2001)

    Article  Google Scholar 

  8. Debayle, J., Gavet, Y., Pinoli, J.C.: General adaptive neighborhood image restoration, enhancement and segmentation. In: Lecture Notes in Computer Science, vol. 4141, pp. 29–40. Springer, Berlin (2006)

    Google Scholar 

  9. Debayle, J., Pinoli, J.C.: Multiscale image filtering and segmentation by means of adaptive neighborhood mathematical morphology. In: Proceedings of the IEEE International Conference on Image Processing, Genova, Italy, pp. 537–540 (2005)

    Google Scholar 

  10. Debayle, J., Pinoli, J.C.: Spatially adaptive morphological image filtering using intrinsic structuring elements. Image Anal. Stereol. 24(3), 145–158 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Debayle, J., Pinoli, J.C.: General adaptive neighborhood image processing—part I: introduction and theoretical aspects. J. Math. Imaging Vis. 25(2), 245–266 (2006)

    Article  MathSciNet  Google Scholar 

  12. Debayle, J., Pinoli, J.C.: General adaptive neighborhood image processing—part II: practical application examples. J. Math. Imaging Vis. 25(2), 267–284 (2006)

    Article  MathSciNet  Google Scholar 

  13. Debayle, J., Pinoli, J.C.: General adaptive neighborhood Choquet image filtering. J. Math. Imaging Vis. 35(3), 173–185 (2009)

    Article  MathSciNet  Google Scholar 

  14. Fitch, J.P., Coyle, E.J., Gallagher, N.C.: Threshold decomposition of multidimensional ranked order operations. IEEE Trans. Circuits Syst. 32(5), 445–450 (1985)

    Article  Google Scholar 

  15. Hirata, N.S.T.: Stack filters: from definitions to design algorithms. In: Advances in Imaging and Electron Physics, vol. 152, pp. 1–47. Elsevier, Amsterdam (2008)

    Google Scholar 

  16. Jourlin, M., Pinoli, J.C.: A model for logarithmic image processing. J. Microsc. 149, 21–35 (1988)

    Article  Google Scholar 

  17. Jourlin, M., Pinoli, J.C.: Logarithmic image processing: the mathematical and physical framework for the representation and processing of transmitted images. Adv. Imaging Electron Phys. 115, 129–196 (2001)

    Article  Google Scholar 

  18. Kong, T.Y., Kopperman, R.: A topological approach to digital topology. Am. Math. Mon. 98(10), 901–917 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kong, T.Y., Roscoe, A.W., Rosenfeld, A.: Concepts of digital topology. Topol. Appl. 49, 219–262 (1992)

    Article  MathSciNet  Google Scholar 

  20. Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. Comput. Vis. Graph. Image Process. 48, 357–393 (1989)

    Article  Google Scholar 

  21. Kovalevski, V.A.: Finite topology and image analysis. Adv. Electron. Electron Phys. 84, 197–259 (1992)

    Google Scholar 

  22. Kovalevsky, V.A.: Finite topology as applied to image analysis. Comput. Vis. Graph. Image Process. 46, 141–161 (1989)

    Article  Google Scholar 

  23. Largeron, C., Bonnevay, S.: A pretopological approach for structural analysis. Inf. Sci. 144, 169–185 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mammass, D., Djeziri, S., Nouboud, F.: A pretopological approach for image segmentation and edge detection. J. Math. Imaging Vis. 15, 169–179 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Maragos, P., Vachier, C.: A PDE formulation for viscous morphological operators with extensions to intensity-adaptive operators. In: IEEE International Conference on Image Processing, pp. 2200–2203 (2008)

    Chapter  Google Scholar 

  26. Meyer, F., Serra, J.: Contrasts and activity lattices. Signal Process. 16(4), 303–317 (1989)

    Article  MathSciNet  Google Scholar 

  27. Meyer, F., Vachier, C.: On the regularization of the watershed transform. In: Advances in Imaging and Electron Physics, vol. 148, pp. 194–249. Elsevier, Amsterdam (2007)

    Google Scholar 

  28. Meziane, A., Iftene, T., Selmaoui, N.: Satellite image segmentation by mathematical pretopology and automatic classification. In: SPIE Image Processing, Signal Processing, and Synthetic Aperture Radar for Remote Sensing, pp. 232–236. (1997)

    Google Scholar 

  29. Peeters, W.: Semi-pseudometric and pre-topological methods in image analysis. Ph.D. Thesis, Université d’Antwerp, Belgique (1999)

  30. Pinoli, J.C.: A general comparative study of the multiplicative homomorphic, log-ratio and logarithmic image processing approaches. Signal Process. 58, 11–45 (1997)

    Article  MATH  Google Scholar 

  31. Pinoli, J.C.: The logarithmic image processing model: connections with human brightness perception and contrast estimators. J. Math. Imaging Vis. 7(4), 341–358 (1997)

    Article  Google Scholar 

  32. Pinoli, J.C., Debayle, J.: General adaptive neighborhood mathematical morphology. In: IEEE International Conference on Image Processing, Cairo, Egypt, pp. 2249–2252 (2009)

    Google Scholar 

  33. Pinoli, J.C., Debayle, J.: Logarithmic adaptive neighborhood image processing (LANIP): introduction, connections to human brightness perception and application issues. J. Adv. Signal Process., Spec. Issue Image Percept. 2007, 36105 (2007), 22 p.

    Google Scholar 

  34. Presles, B., Debayle, J., Fevotte, G., Pinoli, J.C.: A novel image analysis method for in-situ monitoring the particle size distribution of batch crystallisation process. J. Electron. Imaging 19(3), 1–7 (2010)

    Article  Google Scholar 

  35. Rosenfeld, A.: Digital topology. Am. Math. Mon. 86, 621–630 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  36. Selmaoui, N., Leschi, C., Emptoz, H.: A new approach to crest lines detection in grey level images. Acta Stereol. 13(1), 231–236 (1994)

    Google Scholar 

  37. Smyth, M.B.: Semi-metrics, closure spaces and digital topology. Theor. Comput. Sci. 151, 257–276 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  38. Stadler, B.M.R., Stadler, P.F.: Basic Properties of Closure Spaces (2002)

  39. Stadler, B.M.R., Stadler, P.F.: Basic Properties of Filter Convergence Spaces (2002)

  40. Stadler, B.M.R., Stadler, P.F.: Generalized topological spaces in evolutionary theory and combinatorial chemistry. J. Chem. Inf. Comput. Sci. 42(3), 577–585 (2002c)

    Article  Google Scholar 

  41. Stadler, B.M.R., Stadler, P.F., Shpak, M., Wagner, G.P.: Recombination spaces, metrics, and pretopologies. Z. Phys. Chem. 216, 217–234 (2002)

    Article  Google Scholar 

  42. Tversky, A.: Features of similarity. Psychol. Rev. 84(4), 327–352 (1977)

    Article  Google Scholar 

  43. Vachier, C.: Upper and lower grey-level adaptive morphological operators. In: International Conference on Advances in Pattern Recognition, Kolkata, India, pp. 77–80 (2009)

    Chapter  Google Scholar 

  44. Vachier, C., Meyer, F.: The viscous watershed transform. J. Math. Imaging Vis. 22(2), 251–267 (2005)

    Article  MathSciNet  Google Scholar 

  45. Wendt, P.D., Coyle, E.J., Gallagher, N.C.: Stack filters. IEEE Trans. Acoust. Speech Signal Process. 34(4), 898–911 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Debayle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Debayle, J., Pinoli, JC. General Adaptive Neighborhood-Based Pretopological Image Filtering. J Math Imaging Vis 41, 210–221 (2011). https://doi.org/10.1007/s10851-011-0271-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-011-0271-5

Keywords

Navigation