Skip to main content
Log in

On the Use of Low-Pass Filters for Image Processing with Inverse Laplacian Models

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

A novel signal processing-oriented approach to solving problems involving inverse Laplacians is introduced. The Monogenic Signal is a powerful method of computing the phase of discrete signals in image data, however it is typically used with band-pass filters in the capacity of a feature detector. Substituting low-pass filters allows the Monogenic Signal to produce approximate solutions to the inverse Laplacian, with the added benefit of tunability and the generation of three equivariant properties (namely local energy, local phase and local orientation), which allow the development of powerful numerical solutions for a new set of problems. These principles are applied here in the context of biological cell segmentation from brightfield microscopy image data. The Monogenic Signal approach is used to generate reduced noise solutions to the Transport of Intensity Equation for optical phase recovery, and the resulting local phase and local orientation terms are combined in an iterative level set approach to accurately segment cell boundaries. Potential applications of this approach are discussed with respect to other fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ali, R., Gooding, M., Christlieb, M., Brady, M.: Automatic segmentation of adherent biological cell boundaries and nuclei from brightfield microscopy images, Machine Vision and Applications, April 2011, online publication http://www.springerlink.com/content/6158882w07024402/

  2. Barbero, S., Thibos, L.: Error analysis and correction in wavefront reconstruction from the transport-of-intensity equation. Opt. Eng. 45, 1–6 (2006)

    Article  Google Scholar 

  3. Barone-Nugent, E., Barty, A., Nugent, K.: Quantitative phase-amplitude microscopy I. Optical microscopy. J. Microsc. 206, 194–203 (2002)

    Article  MathSciNet  Google Scholar 

  4. Bellegia, M., Schofield, M., Volkov, V., Zhu, Z.: On the transport of intensity technique for phase retrieval. Ultramicroscopy 102(1), 37–49 (2004)

    Article  Google Scholar 

  5. Boukerroui, D., Noble, A., Brady, M.: On the choice of Band-Pass quadrature filters. J. Math. Imaging Vis. 21, 53–80 (2004)

    Article  MathSciNet  Google Scholar 

  6. Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  7. Curl, C., Harris, T., Harris, P., Allman, B., Bellair, C., Stewart, A., Delbridge, L.: Quantitative phase microscopy: a new tool for measurement of cell culture growth and confluency in situ. Eur. J. Physiol. 448, 462–468 (2004)

    Article  Google Scholar 

  8. Felsberg, M., Sommer, G.: The monogenic signal. IEEE Trans. Signal Process. 49(12), 3136–3144 (2001)

    Article  MathSciNet  Google Scholar 

  9. Fienup, J.: Phase retrieval algorithms: a comparison. Appl. Opt. 21, 2758–2769 (1982)

    Article  Google Scholar 

  10. Granlund, G., Knutsson, H.: Signal Processing for Computer Vision. Springer/Kluwer Academic, Berlin (1995)

    Google Scholar 

  11. Horn, B.: Robot Vision. MIT Press, Cambridge (1986)

    Google Scholar 

  12. Ishizuka, K., Allman, B.: Phase measurement of atomic resolution image using transport of intensity equation. J. Elect. Microscopy 54, 191–197 (2005)

    Article  Google Scholar 

  13. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, San Diego (1998)

    MATH  Google Scholar 

  14. Marr, D.: Vision—A Computational Investigation into the Human Representation and Processing of Visual Information. Freeman, New York (1982)

    Google Scholar 

  15. Mellor, M., Brady, M.: Phase mutual information as a similarity measure for registration. Med. Image Anal. 9(4), 330–43 (2005)

    Article  Google Scholar 

  16. Mellor, M., Hong, B.-W., Brady, M.: Locally rotation, contrast, and scale invariant descriptors for texture analysis. IEEE Trans. Pattern Anal. Mach. Intell. 30(1), 52–61 (2008)

    Article  Google Scholar 

  17. Oppenheim, A., Lim, J.: The importance of phase in signals. Proc. IEEE 69, 529–550 (1981)

    Article  Google Scholar 

  18. Paganin, D., Barty, A., McMahon, P., Nugent, K.: Quantitative phase-amplitude microscopy. III. The effects of noise. J. Microsc. 214, 51–61 (2004)

    Article  MathSciNet  Google Scholar 

  19. Paganin, D., Nugent, K.: Noninterferometric phase imaging with partially coherent light. Phys. Rev. Lett. 80(12), 2586–2589 (1998)

    Article  Google Scholar 

  20. Sethian, J.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  21. Teague, M.: Deterministic phase retrieval: a Green’s function solution. J. Opt. Soc. Am. 73, 1434–1441 (1983)

    Article  Google Scholar 

  22. Venkatesh, S., Owens, R.: On the classification of image features. Pattern Recognit. Lett. 11, 339–349 (1990)

    Article  MATH  Google Scholar 

  23. Volkov, V., Zhu, Y., De Graef, M.: A new symmetrized solution for phase retrieval using the transport of intensity equation. Micron 33(5), 411–416 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rehan Ali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, R., Szilagyi, T., Gooding, M. et al. On the Use of Low-Pass Filters for Image Processing with Inverse Laplacian Models. J Math Imaging Vis 43, 156–165 (2012). https://doi.org/10.1007/s10851-011-0299-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-011-0299-6

Keywords

Navigation