Skip to main content
Log in

Nonparametric Image Segmentation Using Rényi’s Statistical Dependence Measure

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

In this paper, we present a novel nonparametric active region model for image segmentation. This model partitions an image by maximizing the similarity between the image and a label image, which is generated by setting different constants as the intensities of partitioned subregions. The intensities of these two images can not be compared directly as they are of different modalities. In this work we use Rényi’s statistical dependence measure, maximum cross correlation, as a criterion to measure their similarity. By using this measure, the proposed model deals directly with independent samples and does not need to estimate the continuous joint probability density function. Moreover, the computation is further simplified by using the theory of reproducing kernel Hilbert spaces. Experimental results based on medical and synthetic images are provided to demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mumford, D., Shah, J.: Optimal approximation by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  3. Vese, L., Chan, T.: A multiphase level set framework for image segmentation using the Mumford and shah model. Int. J. Comput. Vis. 50(3), 271–293 (2002)

    Article  MATH  Google Scholar 

  4. Zhu, S.C., Yuille, A.: Region competition: unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 18(9), 884–900 (1996)

    Article  Google Scholar 

  5. Rousson, M., Deriche, R.: A variational framework for active and adaptive segmentation of vector values images. In: Proceedings of Workshop on Motion and Video Computing, pp. 56–61 (2002)

    Chapter  Google Scholar 

  6. Paragios, N., Deriche, R.: Geodesic active regions and level set methods for supervised texture segmentation. Int. J. Comput. Vis. 46, 223–247 (2002)

    Article  MATH  Google Scholar 

  7. Duda, R., Hart, P.: Pattern Classification and Scene Analysis. Wiley, New York (1973)

    MATH  Google Scholar 

  8. Abd-Almageed, W., Smith, C.E., Ramadan, S.: Kernel snakes: non-parametric active contour models. IEEE Int. Conf. Syst. Man Cybern. 1, 240–244 (2003)

    Google Scholar 

  9. Aubert, A., Barlaud, M., Faugeras, O., Jehan-Besson, S.: Image segmentation using active contours: calculus of variations or shape gradients. SIAM Appl. Math. 63(6), 2128–2154 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Huang, X., Metaxas, D., Chen, T.: Metamorphs: deformable shape and texture models. In Proceedings of IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, vol. 1, pp. 496–503 (2004)

    Google Scholar 

  11. Mory, B., Ardon, R., Thiran, J.-P.: Variational segmentation using fuzzy region competition and local non-parametric probability density functions. In: IEEE International Conference on Computer Vision (ICCV), Rio, Brazil (2007)

    Google Scholar 

  12. Ni, K., Bresson, X., Chan, T., Esedoglu, S.: Local histogram based segmentation using the Wasserstein distance. Int. J. Comput. Vis. 84, 97–111 (2009)

    Article  Google Scholar 

  13. Kim, J., Fisher, J., Yezzi, A., Cetin, M., Willsky, A.: A nonparametric statistical method for image segmentation using information theory and curve evolution. IEEE Trans. Image Process. 14(10), 1486–1502 (2005)

    Article  MathSciNet  Google Scholar 

  14. Yezzi, A., Zollei, L., Kapur, T.: A variational framework for joint segmentation and registration. In Proc. IEEE MMBIA, pp. 44–51 (2001)

    Google Scholar 

  15. Le Guyader, C., Vese, L.: A Combined Segmentation and Registration Framework with a Nonlinear Elasticity Smoother. Lecture Notes in Computer Science, vol. 5567, pp. 600–611 (2009)

    Google Scholar 

  16. Arrate, F., Ratnanather, J.T., Younes, L.: Diffeomorphic active contours. SIAM J. Imaging Sci. 3(2), 176–198 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rényi, A.: On measure of dependence. Acta Math. Acad. Sci. Hung. 10, 441–451 (1959)

    Article  MATH  Google Scholar 

  18. Shi, J., Chen, Y., Rao, M., Lee, J.S.: A statistical similarity measure for non-rigid multi-modal image registration. Proc. SPIE 7623, 762307 (2010)

    Article  Google Scholar 

  19. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Applied Mathematica Sciences, vol. 153. Springer, New York (2002)

    Google Scholar 

  20. Chan, T., Vese, L.: A level set algorithm for minimizing the Mumford-Shah functional in image processing. In: IEEE/Computer Society Proceedings of the 1st IEEE Workshop on “Variational and Level Set Methods in Computer Vision”, pp. 161–168 (2001)

    Chapter  Google Scholar 

  21. Osher, S., Sethian, J.A.: Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chan, T., Wong, C.K.: Total variation blind deconvolution. IEEE Trans. Image Process. 7, 370–375 (1998)

    Article  Google Scholar 

  23. Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of denoising and segmentation models. SIAM J. Appl. Math. 66, 1632–1648 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20, 89–97 (2004)

    Article  MathSciNet  Google Scholar 

  25. Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J.-P., Osher, S.: Fast global minimization of the active contour/snake model. J. Math. Imaging Vis. 28, 151–167 (2007)

    Article  MathSciNet  Google Scholar 

  26. Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haili Zhang.

Appendix

Appendix

In this section, we give the basic theories of RKHS we have used in this paper.

Let E be an arbitrary set and H be a Hilbert space of real functions on E. We say that H is a RKHS if the linear map F x :ff(x) is a bounded functional for any xE.

By this definition, F x H , which is the dual space of H. Therefore, Reisz representation theorem shows that there exists a unique K x H, such that

$$f(x) = \langle F_x, f\rangle = \langle K_x, f\rangle,\quad \forall f\in H.$$

Define K:E×E→ℝ as K(x,y)=〈K x (⋅),K y (⋅)〉. It is easy to see that K has the following properties:

  1. 1.

    K is symmetric: K(x,y)=K(y,x).

  2. 2.

    Reproducing property: f(x)=〈K(x,⋅),f(⋅)〉.

  3. 3.

    K is positive definite: \(\sum_{i,j}^{n}a_{i}a_{j}K(x_{i},x_{j})\geq 0\) holds for all x 1,x 2,…,x n E, a 1,a 2,…,a n ∈ℝ and the equality holds if and only if a i =0, i=1,2,…,n.

We call such an K the reproducing kernel for the Hilbert space H.

On the other hand, suppose K:E×E→ℝ is symmetric and positive definite, then according to the Moore-Aronszajn theorem [26], there is a unique Hilbert space of functions on E for which K is a reproducing kernel. In fact, let H 0(E) be the linear span of the functions {K(x,⋅)|xE} and define the inner product in H 0(E) to be

$$\Biggl\langle \sum_{i=1}^na_i K(x_i, \cdot), \sum_{j=1}^mb_j K(y_i, \cdot)\Biggr\rangle = \sum _{i=1}^n\sum_{j=1}^ma_i b_j K(x_i,x_j).$$

Let H(E) be the completion of H 0(E) with respect to this inner product. It is not difficult to check that H(E) is the unique RKHS with reproducing kernel K.

For the particular case E=ℝ. Let C 0(ℝ) be the space of real valued continuous functions vanishing at infinity with the supremum norm. Then we have the following result

$$\sup_{f,g\in V(\mathbb{R})} CC\bigl(f(X),g(Y)\bigr)=\sup_{f,g\in H_0(\mathbb{R})} CC\bigl(f(X),g(Y)\bigr),$$
(51)

where V(ℝ) is the space of all real Borel measurable functions with finite positive variance. This is the main result we have used in this paper and (17), (18) follows directly from this result.

The proof of this result can be obtained through the following three steps (We omit the details here).

  1. 1.

    H 0(ℝ) is dense in C 0(ℝ).

  2. 2.

    Let V(B) be the space of all real bounded Boreal measurable functions, then

    $$\sup_{f,g\in V(B)} CC(f(X),g(Y))=\sup_{f,g\in C_0(\mathbb{R})} CC(f(X),g(Y)).$$
  3. 3.
    $$\sup_{f,g\in V(\mathbb{R})} CC(f(X),g(Y))=\sup_{f,g\in V(B)} CC(f(X),g(Y)).$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Chen, Y. & Shi, J. Nonparametric Image Segmentation Using Rényi’s Statistical Dependence Measure. J Math Imaging Vis 44, 330–340 (2012). https://doi.org/10.1007/s10851-012-0329-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-012-0329-z

Keywords

Navigation