Skip to main content
Log in

Differential-Based Geometry and Texture Editing with Brushes

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We present an interactive modeling framework for 3D shapes and for texture maps. The technique combines a differential-based deformation method with the idea of geometry brushes that allow to interactively apply modifications by painting on the geometry. Whereas most other deformation techniques demand the designer to define and move hard constrained regions on the surface, the proposed modeling process is similar to sculpting.

Geometry brushes allow the user to locally manipulate the metric, enlarge, shrink or rotate parts of the surface and to generate bumps. In a similar way it is possible to modify texture maps, or more generally, arbitrary tensor maps on surfaces. The local modifications of the surface are integrated to a globally consistent deformation and visualized in real-time.

While the geometry brushes are intended for local editing, the underlying technique can also be applied globally. We show how differentials may be modified for creating specific effects, like cartoonization of shapes or adjusting texture images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Botsch, M., Sorkine, O.: On linear variational surface deformation methods. IEEE Trans. Vis. Comput. Graph. 14, 213–230 (2008)

    Article  Google Scholar 

  2. Crane, K., Pinkall, U., Schröder, P.: Spin transformations of discrete surfaces. ACM Trans. Graph. 30(4), 104:1–104:10 (2011)

    Article  Google Scholar 

  3. Dierkes, U., Hildebrandt, S., Küster, A., Wohlrab, O.: Minimal Surfaces vol. 1. Springer, Berlin (1992)

    Google Scholar 

  4. Eigensatz, M., Pauly, M.: Positional, metric, and curvature control for constraint-based surface deformation. Comput. Graph. Forum 28(2), 551–558 (2009)

    Article  Google Scholar 

  5. Eigensatz, M., Sumner, R.W., Pauly, M.: Curvature-domain shape processing. Comput. Graph. Forum 27(2), 241–250 (2008)

    Article  Google Scholar 

  6. von Funck, W., Theisel, H., Seidel, H.P.: Vector field based shape deformations. ACM Trans. Graph. 25, 1118–1125 (2006)

    Article  Google Scholar 

  7. Gal, R., Sorkine, O., Cohen-Or, D.: Feature-aware texturing. In: Proceedings of Eurographics Symposium on Rendering, pp. 297–303 (2006)

    Google Scholar 

  8. Gal, R., Sorkine, O., Mitra, N., Cohen-Or, D.: iwires: An analyze-and-edit approach to shape manipulation. ACM Trans. Graphics (Proc. ACM SIGGRAPH) 28(3), 33:1–33:10 (2009)

    Google Scholar 

  9. Girault, V., Raviart, P.: Finite element methods for Navier-Stokes equations. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  10. Hanrahan, P., Haeberli, P.: Direct wysiwyg painting and texturing on 3d shapes. SIGGRAPH Comput. Graph. 24(4), 215–223 (1990)

    Article  Google Scholar 

  11. Huang, J., Shi, X., Liu, X., Zhou, K., Wei, L.Y., Teng, S.H., Bao, H., Guo, B., Shum, H.Y.: Subspace gradient domain mesh deformation. ACM Trans. Graph. 25, 1126–1134 (2006)

    Article  Google Scholar 

  12. Igarashi, T., Cosgrove, D.: Adaptive unwrapping for interactive texture painting. In: Proceedings of the 2001 Symposium on Interactive 3D graphics, I3D ’01, pp. 209–216. ACM, New York (2001)

    Chapter  Google Scholar 

  13. Kraevoy, V., Sheffer, A., Gotsman, C.: Matchmaker: constructing constrained texture maps. ACM Trans. Graph. 22(3), 326–333 (2003)

    Article  Google Scholar 

  14. Lawrence, J., Funkhouser, T.: A painting interface for interactive surface deformations. Graph. Models 66, 418–438 (2004)

    Article  Google Scholar 

  15. Lévy, B.: Constrained texture mapping for polygonal meshes. In: Siggraph, pp. 417–424 (2001)

    Google Scholar 

  16. Lipman, Y., Sorkine, O., Levin, D., Cohen-Or, D.: Linear rotation-invariant coordinates for meshes. ACM Trans. Graph. 24(3), 479–487 (2005)

    Article  Google Scholar 

  17. Milliron, T., Jensen, R.J., Barzel, R., Finkelstein, A.: A framework for geometric warps and deformations. ACM Trans. Graph. 21, 20–51 (2002)

    Article  Google Scholar 

  18. Nealen, A., Igarashi, T., Sorkine, O., Alexa, M.: Fibermesh: designing freeform surfaces with 3d curves. ACM Trans. Graph. 26(3) (2007)

  19. Nealen, A., Sorkine, O., Alexa, M., Cohen-Or, D.: A sketch-based interface for detail-preserving mesh editing. ACM Trans. Graph. 24(3), 1142–1147 (2005)

    Article  Google Scholar 

  20. Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Plateau 2(1), 1–28 (1993)

    MathSciNet  Google Scholar 

  21. Pixologic, Inc.: Zbrush. See http://www.pixologic.com/zbrush/

  22. Polthier, K., Preuss, E.: Identifying vector field singularities using a discrete Hodge decomposition. In: Visualization and Mathematics, vol. III, pp. 113–134. Springer, Berlin (2003)

    Google Scholar 

  23. Schaefer, S., McPhail, T., Warren, J.: Image deformation using moving least squares. ACM Trans. Graph. 25 (2006)

  24. Seo, H., Cordier, F.: Constrained texture mapping using image warping. Comput. Graph. Forum 29(1), 160–174 (2010)

    Article  Google Scholar 

  25. Sorkine, O., Botsch, M.: Tutorial: Interactive shape modeling and deformation. In: Eurographics (2009)

    Google Scholar 

  26. Takayama, K., Schmidt, R., Singh, K., Igarashi, T., Boubekeur, T., Sorkine, O.G.: Interactive mesh geometry cloning. Comput. Graph. Forum 30(2), 613–622 (2011)

    Article  Google Scholar 

  27. Toledo, S., Taucs: A library of sparse linear solvers, Version 2.2 (2003). See http://www.tau.ac.il/~stoledo/taucs/

  28. Wardetzky, M.: Discrete differential operators on polyhedral surfaces—convergence and approximation. Ph.D. thesis, Freie Universität, Berlin (2006)

  29. Xu, W., Zhou, K.: Gradient domain mesh deformation—a survey. J. Comput. Sci. Technol. 24(1), 6–18 (2009)

    Article  Google Scholar 

  30. Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B., Shum, H.Y.: Mesh editing with Poisson-based gradient field manipulation. ACM Trans. Graph. 23(3), 644–651 (2004)

    Article  Google Scholar 

  31. Zhou, Q., Weinkauf, T., Sorkine, O.: Feature-based mesh editing. In: Proc. Eurographics, Short Papers (2011)

    Google Scholar 

  32. Zimmermann, J., Nealen, A., Alexa, M.: Silsketch: automated sketch-based editing of surface meshes. In: Proceedings of the 4th Eurographics Workshop on Sketch-Based Interfaces and Modeling, SBIM ’07, pp. 23–30. ACM, New York (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konrad Polthier.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(MP4 16.0 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krauth, N., Nieser, M. & Polthier, K. Differential-Based Geometry and Texture Editing with Brushes. J Math Imaging Vis 48, 359–368 (2014). https://doi.org/10.1007/s10851-013-0443-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-013-0443-6

Keywords

Navigation