Skip to main content
Log in

A Partial Splitting Augmented Lagrangian Method for Low Patch-Rank Image Decomposition

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Following the recent work Schaeffer and Osher (SIAM J Imaging Sci 6:226–262, 2013), the low patch-rank interpretation for the oscillating patterns of an image validates the application of matrix-rank optimization to image decomposition. Therein, the problem was mathematically modeled as a separable convex programming with three-block (a total variation semi-norm for regularizing the cartoon, a low-rank constraint for extracting the texture, and a data fidelity term for approximating the target image), and was algorithmically handled by the split Bregman method with inner Gauss-Seidel sweep loops. In this paper, we develop an alternating direction method of multipliers (ADMM) based prediction–correction method for solving the low patch-rank model with all resulting subproblems admitting closed-form solutions. As a surrogate of the direct extension of ADMM, which was recently proved to be not necessarily convergent, the new method is globally convergent under some mild conditions. Numerical simulations are conducted, which demonstrate the promising performance of the new method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Adams, R.: Sobolev Spaces. Pure and applied Mathematics. Academic Press Inc, Amsterdam (1975)

    Google Scholar 

  2. Aubert, G., Aujol, J.: Modeling very oscillating signals: application to image processing. Appl. Math. Optim. 51, 163–182 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aujol, J., Aubert, G., Blanc-Férau, L., Chambolle, A.: Image decomposition into a bounded variation component and an oscillating component. J. Math. Imaging Vis. 22, 71–88 (2005)

    Article  Google Scholar 

  4. Aujol, J., Chambolle, A.: Dual norms and image decomposition models. Int. J. Comput. Vis. 63, 85–104 (2005)

    Article  Google Scholar 

  5. Aujol, J., Gilboa, G., Chan, T., Osher, S.: Structure–texture image decomposition-modeling, algorithms, and parameter selection. Int. J. Comput. Vis. 67, 111–136 (2006)

    Article  MATH  Google Scholar 

  6. Bauschke, H., Combettes, P.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer Press, New York (2011)

    Book  MATH  Google Scholar 

  7. Bertalmio, M., Vese, L., Sapiro, G., Osher, S.: Simultaneous structure and texture image inpainting. IEEE Trans. Image Process. 12, 882–889 (2003)

    Article  Google Scholar 

  8. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3, 1–122 (2010)

    Article  MATH  Google Scholar 

  9. Buades, A., Coll, B., Morel, J.: On image denoising methods. Multiscale Model. Simul. 4, 490–530 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Buades, A., Coll, B., Morel, J.: Neighborhood filters and PDE’s. Numer. Math. 105, 1–34 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cai, J., Chan, R., Shen, Z.: Simultaneous cartoon and texture inpainting. Inverse Prob. Imaging 4, 379–395 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Candès, E., Li, X., Ma, Y., Wright, J.: Robust principal component analysis?. J. ACM. 58. doi:10.1145/1970392.1970395

  13. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20, 89–97 (2004)

    Article  MathSciNet  Google Scholar 

  14. Chen, C., He, B., Ye, Y., Yuan, X.: The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent. manuscript, Sept. 30 (2013)

  15. Chen, G., Teboulle, M.: A proximal-based decomposition method for convex minimization problems. Math. Program. 64, 81–101 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  16. Daubechies, I., Teschke, G.: Variational image restoration by means of wavelets: simultaneous decomposition, deblurring and denoising. Appl. Comput. Harmon. Anal. 19, 1–16 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Douglas, J., Rachford, H.: On the numerical solution of the heat conduction problem in two and three space variables. Trans. Am. Math. Soc. 82, 421–439 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  18. Facchinei, F., Pang, J.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Vols I and II. Springer, Berlin (2003)

    Google Scholar 

  19. Fadili, M., Starck, J., Bobin, J., Moudden, Y.: Image decomposition and separation using sparse representations: an overview. Proc. IEEE 98, 983–994 (2010)

    Article  Google Scholar 

  20. Fehrenbach, J., Weiss, P., Lorenzo, C.: Variational algorithms to remove stationary noise: applications to microscopy imaging. IEEE Trans. Image Process. 21, 4420–4430 (2012)

    Article  MathSciNet  Google Scholar 

  21. Gabay, D.: Applications of the method of multipliers to variational inequalities. In: Fortin, M., Glowinski, R. (eds.) Augmented Lagrange Methods: Applications to the Solution of Boundary-Valued Problems, pp. 299–331. North-Holland, Amsterdam (1983)

    Chapter  Google Scholar 

  22. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite-element approximations. Comput. Math. Appl. 2, 17–40 (1976)

    Article  MATH  Google Scholar 

  23. Glowinski, R., Marrocco, A.: Approximation par éléments finis d’ordre un et résolution par pénalisation-dualité d’une classe de problèmes non linéaires, R.A.I.R.O., R2, 41–76 (1975).

  24. Goldstein, T., Osher, S.: The split Bregman method for \(L1\)-regularized problems. SIAM J. Imaging Sci. 2, 3–23 (2009)

    Article  MathSciNet  Google Scholar 

  25. Golub, G., Heath, M., Wahba, G.: Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21, 215–223 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  26. Han, D., Yuan, X.: A note on the alternating direction method of multipliers. J. Optim. Theory Appl. 155, 227–238 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  27. Han, D., Yuan, X., Zhang, W., Cai, X.: An ADM-based splitting methods for separable convex programming. Comput. Optim. Appl. 54, 343–369 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  28. Hansen, P., Nagy, J., O’Leary, D.: Deblurring Images: Matrices, Spectra, and Filtering. SIAM, Philadelphia (2006)

    Book  Google Scholar 

  29. He, B., Tao, M., Xu, M., Yuan, X.: Alternating direction based contraction method for generally separable linearly constrained convex programming problems. Optimization 62, 573–596 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  30. Hong, M., Luo, Z.: On the linear convergence of the alternating direction method of multipliers, arXiv:1208.3922v3 (2013).

  31. Jung, M., Resmerita, E., Vese, L.: Dual norm based iterative methods for image restoration. J. Math. Imaging Vis. 44, 128–149 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  32. Kim, Y., Vese, L.: Image recovery using functions of bounded variation and Sobolev spaces of negative differentiability. Inverse Prob. Imaging 3, 43–68 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  33. Le, T., Vese, L.: Image decomposition using total variation and \(\text{ div }(BMO)^*\). Multiscale Model Simul. 4, 390–423 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  34. Levine, S.: An adaptive variational model for image decomposition. In Energy Minimization Methods in Computer Vision and Pattern Recognition. Springer, New York, 382–397 (2005)

  35. Li, T., Yan, S., Mei, T., Hua, X., Kweon, I.: Image decomposition with multilabel context: algorithms and applications. IEEE Trans. Image Process. 20, 2301–2314 (2011)

    Article  MathSciNet  Google Scholar 

  36. MacKenzie, W.: Atlas of Igneous Rocks and Their Textures. Wiley, New York (1982)

    Google Scholar 

  37. Maure, P., Aujol, J., Peyré, G.: Locally parallel texture modeling. SIAM J. Imaging Sci. 4, 413–447 (2011)

    Article  MathSciNet  Google Scholar 

  38. Meyer, Y.: Oscillating patterns in image processing and nonlinear evolution equations. 22, University Lecture Series, AMS (2002).

  39. Mirmehda, M., Xie, X., Suri, S.: Handbook of Texture Analysis. Imperial College Press, London (2008)

    Book  Google Scholar 

  40. Ng, M., Yuan, X., Zhang, W.: A coupled variational image decomposition and restoration model for blurred cartoon-plus-texture images with missing pixels. IEEE Trans. Image Process. 22, 2233–2246 (2013)

    Article  MathSciNet  Google Scholar 

  41. Osher, S., Sole, A., Vese, L.: Image decomposition and restoration using total variation minimization and the \(H^{-1}\) norm. Multiscale Model. Simul. 1, 349–370 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  42. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D. 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  43. Schaeffer, H., Osher, S.: A low patch-rank interpretation of texture. SIAM J. Imaging Sci. 6, 226–262 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  44. Starck, J., Elad, M., Donoho, D.: Image decomposition via the combination of sparse representations and a variational approach. IEEE Trans. Image Process. 14, 1570–1582 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  45. Tao, M., Yuan, X.: Recovering low-rank and sparse components of matrices from incomplete and noisy observations. SIAM J. Optim. 21, 57–81 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  46. Vese, L., Osher, S.: Modeling textures with total variation minimization and oscillating patterns in image processing. J. Sci. Comput. 19, 553–572 (2002)

    Article  MathSciNet  Google Scholar 

  47. Voort, R.: Applied Metallography. New York, (1986).

  48. Wright, J., Ganesh, A., Rao, S., Ma, Y.: Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization. Adv. Neural Inf. Process. Syst. 22, 2080–2088 (2009)

    Google Scholar 

  49. Yin, W., Goldfarb, D., Osher, S.: A comparison of three total variation based texture extraction models. J. Vis. Commun. Image R. 18, 240–252 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the referees for their constructive suggestions. The first author is supported by the National Natural Science Foundation of China (NFSC) Grants 11071122, 11171159, and 20103207110002 from MOE of China. The third author is supported by NFSC Grant 11301055.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deren Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, D., Kong, W. & Zhang, W. A Partial Splitting Augmented Lagrangian Method for Low Patch-Rank Image Decomposition. J Math Imaging Vis 51, 145–160 (2015). https://doi.org/10.1007/s10851-014-0510-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-014-0510-7

Keywords

Navigation