Skip to main content
Log in

Iterative Constrained Minimization for Vectorial TV Image Deblurring

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

In this paper, we consider the problem of restoring blurred noisy vectorial images where the blurring model involves contributions from the different image channels (cross-channel blur). The proposed method restores the images by solving a sequence of quadratic constrained minimization problems where the constraint is automatically adapted to improve the quality of the restored images. In the present case, the constraint is the Total Variation extended to vectorial images, and the objective function is the \(\ell _2\) norm of the residual. After proving the convergence of the iterative method, we report the results obtained on a wide set of test images, showing that this approach is efficient for recovering nearly optimal results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Almeida, M.S.C., Figueiredo, M.A.T.: Parameter estimation for blind and non-blind deblurring using residual whiteness measures. IEEE Trans. Image Process. 22(7), 2751–2763 (2013)

    Article  MathSciNet  Google Scholar 

  2. Aujol, J., Gilboa, G.: Constrained and SNR-based solutions for TV-Hilbert space image denoising. J. Math. Imaging Vis. 26, 217–237 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Babacan, S., Molina, R., Katsaggelos, A.: Parameter estimation in TV image restoration using variational distribution approximation. IEEE Trans. Image Process. 17(3), 326–339 (2008)

    Article  MathSciNet  Google Scholar 

  4. Blomgren, P., Chan, T.F.: Color TV: total variation methods for restoration of vector-valued images. IEEE Trans. Image Process. 7(3), 304–309 (1998)

    Article  Google Scholar 

  5. Blomgren, P., Chan, T.F.: Modular solvers for image restoration problems using the discrepancy principle. Numer. Linear. Algebra Appl. 9, 347–358 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bresson, X., Chan, T.F.: Fast dual minimization of the vectorial total variation norm and applications to color image processing. Inverse Probl. Imaging 2(4), 455–484 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brito-Loeza, C., Chen, K.: On high-order denoising models and fast algorithms for vector-valued images. IEEE Trans. Image Process. 19(6), 1518–1527 (2010)

    Article  MathSciNet  Google Scholar 

  8. Chen, K., Loli, E.: Piccolomini, and F. Zama. An automatic regularization parameter selection algorithm in the total variation model for image deblurring. Numer. Algorithms 92, 67–73 (2014)

    Google Scholar 

  9. Dong, Y., Hintermuller, M., Rincon-Camacho, M.M.: Automated regularization parameter selection in multi-scale total variation models for image restoration. J. Math. Imaging Vis. 40(1), 83–104 (2011)

    Article  MathSciNet  Google Scholar 

  10. Dong, Y., Hintermuller, M., Rincon-Camacho, M.M.: A multi-scale vectorial \(L^\tau \)-TV framework for color image restoration. Int. J. Comput. Vis. 92, 296–307 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eldar, Y.: Generalized SURE for exponential families. IEEE Trans. Image Process. 21(8), 3659–3672 (2012)

    Article  MathSciNet  Google Scholar 

  12. Fornasier, M., March, R.: Restoration of color images by vector valued BV functions and variational calculus. SIAM J. Appl. Math. 68(2), 437–460 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Galatsanos, N., Katsaggelos, A., Chin, R., Hillery, A.: Least Squares restoration of multichannel images. IEEE Trans. Signal Process. 39(10), 2222–2236 (1991)

    Article  Google Scholar 

  14. Hansen, P.C., Nagy, J.G., O’Leary, D.P.: Deblurring Images: Matrices, Spectra, And Filtering. SIAM Publications, Philadelphia (2006)

    Book  Google Scholar 

  15. Hansen, P.C., O’Leary, D.P.: The use of L-curve in the regularization of of discrete ill-posed problems. SIAM J. Sci. Comput. 14, 1487–1503 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hansen, P.C., Kilmer, M.E., Kjeldsen, R.H.: Exploiting residual information in the parameter choice for discrete ill-posed problems. BIT 46, 41–59 (2006)

  17. Liao, H., Li, F., Ng, M.: Selection of regularization parameter in total variation image restoration. J. Opt. Soc. Am. A 26(11), 2311–2320 (2009)

    Article  MathSciNet  Google Scholar 

  18. Lukas, M.A.: Robust generalized cross validation for choosing the regularization parameter. Inverse Probl. 22, 1883–1902 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Morozov, V.A.: Methods for Solving Incorrectly Posed Problems. Springer, New York (1984)

    Book  Google Scholar 

  20. Ramani, S., Liu, Z., Rosen, J., Nielsen, J., Fessler, J.: Regularization parameter selection for nonlinear iterative restoration and MRI reconstruction using GCV and SURE-based methods. IEEE Trans. Image Process. 21(8), 3659–3672 (2012)

  21. Stein, C.: Estimation of the mean of a multivariate normal distribution. Ann. Stat. 9(6), 1135–1151 (1981)

    Article  MATH  Google Scholar 

  22. Strong, D., Blomgren, P., Chan, T.F.: Spatially adaptive local feature driven total variation minimizing image restoration. CAM Report 97-32, UCLA Math Department (1997)

  23. Strong, D., Blomgren, P., Chan, T.F.: Scale recognition regularization parameter selection and Meyer’s G norm in Total Variation regularization. CAM Report 05-02, UCLA Math Department (2005)

  24. Vogel, C.R., Oman, M.E.: Fast, robust total variation-based reconstruction of noisy, blurred images. IEEE Trans. Image Process. 7, 813–824 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yang, J., Zhang, Y., Yin, W.T.: A fast alternating direction method for \(tvl1-l2\) signal reconstruction from partial Fourier data. Selected topics in IEEE. J. Signal Process. 4(2), 288–297 (2010)

    Google Scholar 

  26. Yang, J., Yin, W., Zhang, Y., Wang, Y.: A fast algorithm for edge-preserving variational multichannel image restoration. SIAM J. Imaging Sci. 2(2), 569–592 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Perceptual image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  28. Wen, Y., Chan, R.: Parameter selection for total variation based image restoration using discrepancy principle. IEEE Trans. Image Process. 21(4), 1770–1781 (2012)

    Article  MathSciNet  Google Scholar 

  29. Zhang, J.P., Chen, K., Yu, B.: An iterative lagrange multiplier method for constrained total-variation-based image denoising. SIAM J. Numer. Anal. 50(3), 983–1003 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhu, X., Milanfar, P.: Automatic parameter selection for denoising algorithms using a no-reference measure of image content. IEEE Trans. Image Process. 19(12), 3116–3132 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Loli Piccolomini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Piccolomini, E.L. & Zama, F. Iterative Constrained Minimization for Vectorial TV Image Deblurring. J Math Imaging Vis 54, 240–255 (2016). https://doi.org/10.1007/s10851-015-0599-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-015-0599-3

Keywords

Navigation