Skip to main content
Log in

Weighted Distances and Digital Disks on the Khalimsky Grid

Disks with Holes and Islands

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

In this paper, after providing an appropriate coordinate system, we investigate the weighted distances on the Khalimsky grid. There are two types of natural neighborhood relations, and one semi-neighborhood is also defined. Weighted distances are defined for both cases, i.e., allowing or not the semi-neighborhood. We give formulae for computing the weighted distance of any point-pair on the Khalimsky grid in these cases. Digital disks based on the weighted distances are also investigated. In some cases, these disks may not be convex; moreover, they may contain holes. Sometimes, if semi-neighborhood is allowed, they are not connected, i.e., they contain islands. The conditions of concavities, holes and islands are characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Borgefors, G.: Distance transformations in arbitrary dimensions. Comput. Vis. Gr. Image Process. 27(3), 321–345 (1984)

    Article  Google Scholar 

  2. Borgefors, G.: Distance transformations in digital images. Comput. Vis. Gr. Image Process. 34(3), 344–371 (1986)

    Article  Google Scholar 

  3. Borgefors, G.: Another comment on “a note on ‘distance transformations in digital images’ ”. CVGIP: Image Underst. 54(2), 301–306 (1991)

    Article  MATH  Google Scholar 

  4. Butt, M.A., Maragos, P.: Optimum design of chamfer distance transforms. IEEE Trans. Image Process. 7(10), 1477–1484 (1998)

    Article  Google Scholar 

  5. Das, P.P., Chakrabarti, P.P., Chatterji, B.N.: Generalized distances in digital geometry. Inf. Sci. 42, 51–67 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Das, P.P., Chakrabarti, P.P., Chatterji, B.N.: Distance functions in digital geometry. Inf. Sci. 42, 113–136 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Deutsch, E.S.: Thinning algorithms on rectangular, hexagonal and triangular arrays. Commun. ACM 15, 827–837 (1972)

    Article  Google Scholar 

  8. Fouard, C., Malandain, G.: Systematized calculation of optimal coefficients of 3-D chamfer norms. In: DGCI 2003: Discrete Geometry for Computer Imagery, LNCS, vol. 2886, pp. 214–223

  9. Fouard, C., Strand, R., Borgefors, G.: Weighted distance transforms generalized to modules and their computation on point lattices. Pattern Recognit. 40(9), 2453–2474 (2007)

    Article  MATH  Google Scholar 

  10. Her, I.: Geometric transformations on the hexagonal grid. IEEE Trans. Image Process. 4(9), 1213–1222 (1995)

    Article  Google Scholar 

  11. Khalimsky, E.D., Kopperman, R., Meyer, P.R.: Computer graphics and connected topologies on finite ordered sets. Topol. Appl. 36, 1–17 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kovács, G., Nagy, B., Vizvári, B.: On weighted distances on the Khalimsky grid. In: DGCI, 2016: Discrete Geometry for Computer Imagery. Lecture Notes in Computer Science, LNCS, vol. 9647, pp. 372–385 (2016)

  13. Kovalevsky, V.A.: Algorithms in digital geometry based on cellular topology. In: Proceedings of IWCIA 2004, LNCS vol. 3322, pp. 366–393 (2004)

  14. Luczak, E., Rosenfeld, A.: Distance on a hexagonal grid. IEEE Trans. Comput. C–25/5, 532–533 (1976)

    Article  MATH  Google Scholar 

  15. Nacken, P.F.M.: Chamfer metrics in mathematical morphology. J. Math. Imaging Vis. 4(3), 233–253 (1994)

    Article  MathSciNet  Google Scholar 

  16. Nagy, B.: Distance functions based on neighbourhood sequences. Publ. Math. 63(3), 483–493 (2003)

    MathSciNet  MATH  Google Scholar 

  17. Nagy, B.: Characterization of digital circles in triangular grid. Pattern Recognit. Lett. 25(11), 1231–1242 (2004)

    Article  Google Scholar 

  18. Nagy, B.: Generalized triangular grids in digital geometry. Acta Math. Acad. Paedagog. Nyíregyháziensis 20, 63–78 (2004)

    MATH  Google Scholar 

  19. Nagy, B.: Distances with generalized neighbourhood sequences in \(n\)D and \(\infty \)D. Discret. Appl. Math. 156, 2344–2351 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nagy, B.: Cellular topology and topological coordinate systems on the hexagonal and on the triangular grids. Ann. Math. Artif. Intell. 75(1-2), 117–134 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nagy, B., Mir-Mohammad-Sadeghi, H.: Digital disks by weighted distances in the triangular grid. In: DGCI, 2016: Discrete Geometry for Computer Imagery. Lecture Notes in Computer Science, LNCS, vol. 9647, pp. 385–397 (2016)

  22. Nagy, B., Strand, R.: A connection between \({\mathbb{Z}}^n\) and generalized triangular grids, ISVC, 2008 : Part II. LNCS vol. 5359, pp. 1157–1166 (2008)

  23. Nagy, B., Strand, R.: Non-traditional grids embedded in \(\mathbb{Z}^n\). Int. J. Shape Model. IJSM (World Scientific) 14(2), 209–228 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nagy, B., Strand, R., Normand, N.: A weight sequence distance function. In: 11th International Symposium on Mathematical Morphology, LNCS vol. 7883, pp. 292–301 (2013)

  25. Normand, N., Évenou, P.: Medial axis lookup table and test neighborhood computation for 3D chamfer norms. Pattern Recognit. 42(10), 2288–2296 (2009)

    Article  MATH  Google Scholar 

  26. Radványi, A.G.: On the rectangular grid representation of general CNN networks. Int. J. Circuit Theory Appl. 30, 181–193 (2002)

    Article  MATH  Google Scholar 

  27. Remy, E., Thiel, E.: Medial axis for chamfer distances: computing look-up tables and neighbourhoods in 2D or 3D. Pattern Recognit. Lett. 23(6), 649–661 (2002)

    Article  MATH  Google Scholar 

  28. Rosenfeld, A., Pfaltz, J.L.: Distance functions on digital pictures. Pattern Recognit. 1, 33–61 (1968)

    Article  MathSciNet  Google Scholar 

  29. Sintorn, I.-M., Borgefors, G.: Weighted distance transforms in rectangular grids. In: ICIAP, pp. 322–326 (2001)

  30. Slapal, J.: Convenient adjacencies for structuring the digital plane. Ann. Math. Artif. Intell. 75(1-2), 69–88 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Strand, R., Nagy, B., Borgefors, G.: Digital distance functions on three-dimensional grids. Theor. Comput. Sci. 412, 1350–1363 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Svensson, S., Borgefors, G.: Distance transforms in 3D using four different weights. Pattern Recognit. Lett. 23(12), 1407–1418 (2002)

    Article  MATH  Google Scholar 

  33. Yamashita, M., Honda, N.: Distance functions defined by variable neighborhood sequences. Pattern Recognit. 17(5), 509–513 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Some parts of the paper were presented in the 19th IAPR international conference on Discrete Geometry for Computer Imagery (DGCI2016) Nantes, France, see [12]. Comments and remarks of the participants, comments and advices of the anonymous reviewers are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedek Nagy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovács, G., Nagy, B. & Vizvári, B. Weighted Distances and Digital Disks on the Khalimsky Grid. J Math Imaging Vis 59, 2–22 (2017). https://doi.org/10.1007/s10851-016-0701-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-016-0701-5

Keywords

Navigation