Skip to main content
Log in

Data Fitting on Manifolds with Composite Bézier-Like Curves and Blended Cubic Splines

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We propose several methods that address the problem of fitting a \(C^1\) curve \(\gamma \) to time-labeled data points on a manifold. The methods have a parameter, \(\lambda \), to adjust the relative importance of the two goals that the curve should meet: being “straight enough” while fitting the data “closely enough.” The methods are designed for ease of use: they only require to compute Riemannian exponentials and logarithms, they represent the curve by means of a number of tangent vectors that grows linearly with the number of data points, and, once the representation is computed, evaluating \(\gamma (t)\) at any t requires a small number of exponentials and logarithms (independent of the number of data points). Among the proposed methods, the blended cubic spline technique combines the additional properties of interpolating the data when \(\lambda \rightarrow \infty \) and reducing to the well-known cubic smoothing spline when the manifold is Euclidean. The methods are illustrated on synthetic and real data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Absil, P.A., Gousenbourger, P.Y., Striewski, P., Wirth, B.: Differentiable Piecewise-Bézier surfaces on Riemannian manifolds. SIAM J. Imaging Sci. 9(4), 1788–1828 (2016). https://doi.org/10.1137/16M1057978

    Article  MathSciNet  MATH  Google Scholar 

  2. Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton http://press.princeton.edu/chapters/absil/ (2008)

  3. Arnould, A., Gousenbourger, P.Y., Samir, C., Absil, P.A., Canis, M.: Fitting smooth paths on Riemannian manifolds : endometrial surface reconstruction and preoperative MRI-based navigation. In: Nielsen, F., Barbaresco, F. (eds.) Geometric Science of Information. Lecture Notes in Computer Sciences, vol. 9389, pp. 491–498. Springer, Berlin (2015). https://doi.org/10.1007/978-3-319-25040-3_53

    Chapter  Google Scholar 

  4. Bagaria, S.J., Rasalkar, D.D., Paunipagar, B.K.: Imaging Tools for Endometriosis: Role of Ultrasound. MRI and Other Imaging Modalities in Diagnosis and Planning Intervention, chap. 24, 437–447 (2012)

    Google Scholar 

  5. Bergmann, R., Gousenbourger, P.Y.: A variational model for data fitting on manifolds by minimizing the acceleration of a Bézier curve. arXiv preprint arXiv:1807.10090 (2018)

  6. Boumal, N., Absil, P.A.: A discrete regression method on manifolds and its application to data on \(\text{SO}(n)\). In: IFAC Proceedings Volumes (IFAC-PapersOnline), vol. 18, pp. 2284–2289 (2011). https://doi.org/10.3182/20110828-6-IT-1002.00542

  7. Boumal, N., Mishra, B., Absil, P.A., Sepulchre, R.: Manopt, a Matlab toolbox for optimization on manifolds. J. Mach. Learn. Res. 15, 1455–1459 (2014). URL http://www.manopt.org

  8. do Carmo, M.P.: Riemannian Geometry. Mathematics (Birkhäuser) Theory. Birkhäuser, Boston (1992). https://doi.org/10.1007/978-0-387-29403-2

  9. Crouch, P., Kun, G., Silva Leite, F.: De Casteljau algorithm on Lie groups and spheres. J. Dyn. Control Syst. 5(3), 397–429 (1999). https://doi.org/10.1023/A:1021770717822

    Article  MathSciNet  MATH  Google Scholar 

  10. Dyn, N.: Linear and nonlinear subdivision schemes in geometric modeling. In: Cucker, F., Pinkus, A., Todd, M.J. (eds.) FoCum, London Math. Soc. Lecture Note Ser., vol. 363, Cambridge University Press, pp. 68–92 (2009). https://doi.org/10.1017/CBO9781139107068.004

  11. Farin, G.E.: Curves and Surfaces for CAGD, 5th edn. Academic Press, Cambridge (2002)

    Google Scholar 

  12. Fletcher, P.T.: Geodesic regression and the theory of least squares on Riemannian manifolds. Int. J. Comput. Vis. 105(2), 171–185 (2013). https://doi.org/10.1007/s11263-012-0591-y

    Article  MathSciNet  MATH  Google Scholar 

  13. Gousenbourger, P.Y., Massart, E., Musolas, A., Absil, P.A., Jacques, L., Hendrickx, J.M., Marzouk, Y.: Piecewise-Bézier C1 smoothing on manifolds with application to wind field estimation. In: ESANN2017, Springer,, pp. 305–310 (2017)

  14. Green, P.J., Silverman, B.W.: Nonparametric Regression and Generalized Linear Models: A Roughness Penalty Approach. CRC Press, Boca Raton (1993)

    MATH  Google Scholar 

  15. Hinkle, J., Fletcher, P.T., Joshi, S.: Intrinsic polynomials for regression on Riemannian manifolds. J. Math. Imaging Vis. 50(1), 32–52 (2014). https://doi.org/10.1007/s10851-013-0489-5

    Article  MathSciNet  MATH  Google Scholar 

  16. Itoh, J., Tanaka, M.: The dimension of a cut locus on a smooth Riemannian manifold. Tohoku Math. J. Second Ser. 50(4), 571–575 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jupp, P.E., Kent, J.T.: Fitting smooth paths to spherical data. J. Appl. Stat. 36(1), 34–46 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  18. Karcher, H.: Riemannian center of mass and mollifier smoothing. Commun. Pure Appl. Math. 30(5), 509–541 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kim, K.R., Dryden, I.L., Le, H.: Smoothing splines on Riemannian manifolds, with applications to 3D shape space. arXiv preprint arXiv:1801.04978, pp. 1–23 (2018)

  20. Lin, A., Walker, M.: CAGD techniques for differentiable manifolds. In: Proceedings of the 2001 International Symposium Algorithms for Approximation IV, pp. 36–43 (2001)

  21. Lin, L., St Thomas, B., Zhu, H., Dunson, D.B.: Extrinsic local regression on manifold-valued data. J. Am. Stat. Assoc. 112(519), 1261–1273 (2017). https://doi.org/10.1080/01621459.2016.1208615

    Article  MathSciNet  Google Scholar 

  22. Machado, L., Leite, F.S.: Fitting smooth paths on Riemannian manifolds. Int. J. Appl. Math. Stat. 4(J06), 25–53 (2006)

    MathSciNet  MATH  Google Scholar 

  23. Machado, L., Monteiro, M.T.T.: A numerical optimization approach to generate smoothing spherical splines. J. Geom. Phys. 111, 71–81 (2017). https://doi.org/10.1016/j.geomphys.2016.10.007

    Article  MathSciNet  MATH  Google Scholar 

  24. Massart, E., Absil, P.A.: Quotient geometry with simple geometry for the manifold of fixed-rank positive-semidefinite matrices. Technical Report, UCL-INMA-2018.06, UCLouvain. URL http://sites.uclouvain.be/absil/2018.06 (2018)

  25. Modin, K., Bogfjellmo, G., Verdier, O.: Numerical algorithm for C2-splines on symmetric spaces. arXiv preprint arXiv:1703.09589 (2018)

  26. O’Neill, B.: Elementary Differential Geometry. Academic Press, London (1966)

    MATH  Google Scholar 

  27. Park, J.: Interpolation and tracking of rigid body orientations. In: ICCAS, pp. 668–673 (2010)

  28. Pennec, X., Fillard, P., Ayache, N.: A Riemannian framework for tensor computing. Int. J. Comput. Vis. 66(1), 41–66 (2006). https://doi.org/10.1007/s11263-005-3222-z

    Article  MATH  Google Scholar 

  29. Popiel, T., Noakes, L.: Bézier curves and C2 interpolation in Riemannian manifolds. J. Approx. Theory 148(2), 111–127 (2007). https://doi.org/10.1016/j.jat.2007.03.002

    Article  MathSciNet  MATH  Google Scholar 

  30. Pyta, L., Abel, D.: Interpolatory Galerkin models for Navier-Stokes-equations. IFAC-PapersOnLine 49(8), 204–209 (2016). https://doi.org/10.1016/j.ifacol.2016.07.442

    Google Scholar 

  31. Rentmeesters, Q.: A gradient method for geodesic data fitting on some symmetric Riemannian manifolds. In: 2011 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), pp. 7141–7146 (2011). https://doi.org/10.1109/CDC.2011.6161280

  32. Samir, C., Absil, P.A., Srivastava, A., Klassen, E.: A Gradient-Descent method for curve fitting on Riemannian manifolds. Found. Comput. Math. 12(1), 49–73 (2012). https://doi.org/10.1007/s10208-011-9091-7

    Article  MathSciNet  MATH  Google Scholar 

  33. Shingel, T.: Interpolation in special orthogonal groups. IMA J. Numer. Anal. 29(3), 731–745 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Su, J., Dryden, I.L., Klassen, E., Le, H., Srivastava, A.: Fitting smoothing splines to time-indexed, noisy points on nonlinear manifolds. Image Vis. Comput. 30(6–7), 428–442 (2012). https://doi.org/10.1016/j.imavis.2011.09.006

    Article  Google Scholar 

  35. Süli, E., Mayers, D.: An Introduction to Numerical Analysis. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  36. Vandereycken, B., Absil, P.A., Vandewalle, S.: Embedded geometry of the set of symmetric positive semidefinite matrices of fixed rank. In: IEEE/SP 15th Workshop on Statistical Signal Processing, 2009. SSP’09, IEEE, pp. 389–392 (2009)

  37. Wallner, J., Nava Yazdani, E., Grohs, P.: Smoothness properties of Lie group subdivision schemes. Multiscale Model. Simul. 6(2), 493–505 (2007). https://doi.org/10.1137/060668353

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The codes developed for this paper use the Manopt toolbox [7]. Special thanks to Benedikt Wirth for the very productive discussions: several methods presented here were conceived during an ongoing joint project on Bézier fitting surfaces.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Yves Gousenbourger.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by (i) the Fonds de la Recherche Scientifique—FNRS and the Fonds Wetenschappelijk Onderzoek—Vlaanderen under EOS Project no 30468160 and (ii) “Communauté française de Belgique - Actions de Recherche Concertées” (contract ARC 14/19-060).

Appendix

Appendix

1.1 Interpolating Bézier Curves: Coefficient Matrices for Control Points Generation

The problem (21) on \(\mathcal {M}= \mathbb {R}^m\) is a quadratic function to be optimized with respect to the \(n+1\) optimization variables \(X = (b_0^+,b_1^-,b_2^-,\dots ,b_n^-)\). The solution of that problem reduces to m independent linear systems \(A \cdot X_k = C \cdot D_k\), where \(X_k\) is the vector of the \(k^\text {th}\) component of the points of X, and \(D_k\) is the vector of the \(k^\text {th}\) component of the data points \((d_i)_{i=0}^n\). We obtain

$$\begin{aligned}&\int _i^{i+1} \Vert \ddot{\beta }_3(t-i;d_i,b_i^+,b_{i+1}^-,d_{i+1}) \Vert ^2_2 \mathrm {d}t \\&\quad =12 ( -3 d_i b_i^+ + 3 b_i^+ b_i^+ - 3 b_i^+ b_{i+1}^- \\&\qquad + 3 b_{i+1}^- b_{i+1}^- - 3 b_{i+1}^- d_{i+1} + K), \end{aligned}$$

with \(i=\lfloor t \rfloor \). K gathers the terms that are independent from the optimization variables. Introducing the differentiability constraints (16) \(b_i^+ = 2p_i - b_i^-\), and \(\beta _3^i\), the \(i^\text {th}\) segment of the composite cubic Bézier curve, one has

$$\begin{aligned} \frac{\partial \beta _3^0}{\partial b_0^+}&= 6 b_{0}^+ - 3 b_{1}^- - 3 d_0 \end{aligned}$$
(42)
$$\begin{aligned} \frac{\partial \beta _3^0}{\partial b_1^-}&= -3 b_{0}^+ + 6 b_{1}^- - 3 d_1 \end{aligned}$$
(43)

and for \(i = 1,\dots ,n-1\), \(n \ge 2\)

$$\begin{aligned} \frac{\partial \beta _3^i}{\partial b_i^-}&= 6 b_{i}^- + 3 b_{i+1}^- - 9 d_i \end{aligned}$$
(44)
$$\begin{aligned} \frac{\partial \beta _3^i}{\partial b_{i+1}^-}&= 3 b_{i}^- + 6 b_{i+1}^- - 6 d_i - 3 d_{i+1}. \end{aligned}$$
(45)

By Definition 2.9, (21) is minimized when these quantities vanish, which yields the linear system \(A \cdot X = C \cdot D\), for \(n \ge 2\) where (in MATLAB indexing)

$$\begin{aligned}&A(\mathtt{1,1:2}) = \begin{bmatrix} 6&-\,3 \end{bmatrix} \\&A(\mathtt{2,1:3}) = \begin{bmatrix} -\,3&12&3 \end{bmatrix}\\&A(\mathtt{k,k-1:k+1}) = \begin{bmatrix} 3&12&3 \end{bmatrix} \quad k = 3,\dots ,n\\&A(\mathtt{n+1,n:n+1}) = \begin{bmatrix} 3&6 \end{bmatrix}. \end{aligned}$$

and

$$\begin{aligned}&C(\mathtt{1,1}) = 3 \\&C(\mathtt{2,2}) = 12 \\&C(\mathtt{k,k-1:k}) = \begin{bmatrix} 6&12 \end{bmatrix} \quad k = 3,\dots ,n\\&C(\mathtt{n+1,n:n+1}) = \begin{bmatrix} 6&3 \end{bmatrix}. \end{aligned}$$

The third lines in the definition of A and C only hold for \(n>2\). All the other entries are equal to zero.

1.2 Fitting Curves : Coefficient Matrices for Control Points Generation

The problem (26) on \(\mathcal {M}= \mathbb {R}^m\) is a quadratic function to be optimized with respect to the \(2n+2\) optimization variables \(X = (p_0,b_0^+,b_1^-,b_1^+,\dots ,b_n^-,p_n)\). As in “Appendix A.1,” the solution of that problem reduces to m independent linear systems \((A_0 + \lambda A_1) \cdot X_k = \lambda C \cdot D_k\). This system depends on the regularization parameter \(\lambda > 0\), on X, and on the points \((d_i)_{i=0}^n\) in D.

For \(n \ge 4\), the matrices of coefficients \(A_0, A_1 \in \mathbb {R}^{(2n+2) \times (2n+2)}\) and \(C \in \mathbb {R}^{ (2n+2) \times (n+1)}\) are given by the following sparse matrices.

\(A_0\) is given, for \(i = 2,\dots ,n-2\), by

$$\begin{aligned}&A_0(\mathtt{1,1:4}) = \begin{bmatrix} 24&-\,36&6&6 \end{bmatrix} \\&A_0(\mathtt{2,1:4}) = \begin{bmatrix} -\,36&72&-\,36&0 \end{bmatrix}\\&A_0(\mathtt{3,1:6}) = \begin{bmatrix} 6&-\,36&48&-\,24&3&3 \end{bmatrix}\\&A_0(\mathtt{4,1:6}) = \begin{bmatrix} 6&0&-\,24&48&-\,33&3\end{bmatrix}\\&A_0(\mathtt{2i+1,2i-1:2i+6}) = \begin{bmatrix} 3&-\,33&48&-\,24&3&3 \end{bmatrix}\\&A_0(\mathtt{2i+2,2i-1:2i+6}) =\begin{bmatrix} 3&3&-\,24&48&-\,33&3 \end{bmatrix}\\&A_0(\mathtt{2n-1,2n-3:2n+2}) =\begin{bmatrix} 3&-\,33&48&-\,24&0&6 \end{bmatrix}\\&A_0(\mathtt{2n,2n-3:2n+2}) = \begin{bmatrix} 3&3&-\,24&48&-\,36&6\end{bmatrix}\\&A_0(\mathtt{2n+1,2n-1:2n+2}) =\begin{bmatrix} 0&-\,36&72&-\,36\end{bmatrix}\\&A_0(\mathtt{2n+2,2n-1:2n+2}) =\begin{bmatrix} 6&6&-\,36&24\end{bmatrix}. \end{aligned}$$

The coefficients of \(A_1\) are

$$\begin{aligned}&A_1(\mathtt{1,1}) = \lambda \\&A_1(\mathtt{2,2}) = 0 \\&A_1(\mathtt{2i-1,2i-1:2i}) = \frac{1}{2} \begin{bmatrix} \lambda , \lambda \end{bmatrix} \\&A_1(\mathtt{2n+1,2n+1}) = 0 \\&A_1(\mathtt{2n+2,2n+2}) = \lambda , \end{aligned}$$

for \(i = 2,\dots ,n\). Finally, the coefficients of C are given, for \(i=2,\dots ,n\), by

$$\begin{aligned}&C(\mathtt{1,1}) = 2\lambda \\&C(\mathtt{2i-1,i}) = \lambda \\&C(\mathtt{2i,i}) = \lambda \\&C(\mathtt{2n+2,n+1}) = 2\lambda . \end{aligned}$$

The other entries are equal to zero.

1.3 Elements of Differential Geometry

Tables 4 and 5 give the explicit formulae used to evaluate the exponential map and the logarithm in this paper. They are implemented in Manopt [7] as a proper factory.

Table 4 Riemannian operators for \(\mathbb {S}^{m-1}\) extracted from [31]
Table 5 Riemannian operators for \({\mathrm {SO}}(m)\) extracted from [6]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gousenbourger, PY., Massart, E. & Absil, PA. Data Fitting on Manifolds with Composite Bézier-Like Curves and Blended Cubic Splines. J Math Imaging Vis 61, 645–671 (2019). https://doi.org/10.1007/s10851-018-0865-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-018-0865-2

Keywords

Navigation