Skip to main content
Log in

Multiscale Edge Detection Using First-Order Derivative of Anisotropic Gaussian Kernels

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Spatially scaled edges are ubiquitous in natural images. To better detect edges with heterogeneous widths, in this paper, we propose a multiscale edge detection method based on first-order derivative of anisotropic Gaussian kernels. These kernels are normalized in scale-space, yielding a maximum response at the scale of the observed edge, and accordingly, the edge scale can be identified. Subsequently, the maximum response and the identified edge scale are used to compute the edge strength. Furthermore, we propose an adaptive anisotropy factor of which the value decreases as the kernel scale increases. This factor improves the noise robustness of small-scale kernels while alleviating the anisotropy stretch effect that occurs in conventional anisotropic methods. Finally, we evaluate our method on widely used datasets. Experimental results validate the benefits of our method over the competing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. http://www.cs.rug.nl/~imaging/databases/contour_database/contour_database.

  2. https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.

References

  1. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)

    Article  Google Scholar 

  2. Atick, J.J., Redlich, A.N.: What does the retina know about natural scenes? Neural Comput. 4(2), 196–210 (1992)

    Article  Google Scholar 

  3. Bao, P., Zhang, L., Wu, X.: Canny edge detection enhancement by scale multiplication. IEEE Trans. Pattern Anal. Mach. Intell. 27(9), 1485–1490 (2005)

    Article  Google Scholar 

  4. Basu, M.: Gaussian-based edge-detection methods—a survey. IEEE Trans. Syst. Man Cybern. C-Appl. Rev. 32(3), 252–260 (2002)

    Article  Google Scholar 

  5. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

  6. Coleman, S.A., Scotney, B.W., Suganthan, S.: Edge detecting for range data using Laplacian operators. IEEE Trans. Image Process. 19(11), 2814–2824 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ding, L., Goshtasby, A.: On the Canny edge detector. Pattern Recognit. 34(3), 721–725 (2001)

    Article  MATH  Google Scholar 

  8. Dollár, P., Zitnick, C.L.: Fast edge detection using structured forests. IEEE Trans. Pattern Anal. Mach. Intell. 37(8), 1558–1570 (2015)

    Article  Google Scholar 

  9. Elder, J.H., Zucker, S.W.: Local scale control for edge detection and blur estimation. IEEE Trans. Pattern Anal. Mach. Intell. 20(7), 699–716 (1998)

    Article  Google Scholar 

  10. Goldberg, A.V., Kennedy, R.: An efficient cost scaling algorithm for the assignment problem. Math. Program. 71(2), 153–177 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Grigorescu, C., Petkov, N., Westenberg, M.A.: Contour detection based on nonclassical receptive field inhibition. IEEE Trans. Image Process. 12(7), 729–739 (2003)

    Article  Google Scholar 

  12. Guerra, C., Jurio, A., Bustince, H., Lopez-Molina, C.: Multichannel generalization of the upper-lower edge detector using ordered weighted averaging operators. J. Intell. Fuzzy Syst. 27(3), 1433–1443 (2014)

    Article  Google Scholar 

  13. Jacob, M., Unser, M.: Design of steerable filters for feature detection using Canny-like criteria. IEEE Trans. Pattern Anal. Mach. Intell. 26(8), 1007–1019 (2004)

    Article  Google Scholar 

  14. Koschan, A., Abidi, M.: Detection and classification of edges in color images. IEEE Signal Process. Mag. 22(1), 64–73 (2005)

    Article  Google Scholar 

  15. Li, X., Chen, T.: Nonlinear diffusion with multiple edginess thresholds. Pattern Recognit. 27(8), 1029–1037 (1994)

    Article  Google Scholar 

  16. Li, Y., Wang, S., Tian, Q., Ding, X.: A survey of recent advances in visual feature detection. Neurocomputing 149, 736–751 (2015)

    Article  Google Scholar 

  17. Li, Z., Ahmed, E., Eltawil, A.M., Cetiner, B.A.: A beam-steering reconfigurable antenna for WLAN applications. IEEE Trans. Antennas Propag. 63(1), 24–32 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lindeberg, T.: Edge detection and ridge detection with automatic scale selection. Int. J. Comput. Vis. 30(2), 117–156 (1998)

    Article  Google Scholar 

  19. Lindeberg, T.: Scale selection properties of generalized scale-space interest point detectors. J. Math. Imaging Vis. 46(2), 177–210 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lindeberg, T.: Image matching using generalized scale-space interest points. J. Math. Imaging Vis. 52(1), 3–36 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, Y., Cheng, M.-M., Hu, X., Wang, K., Bai, X.: Richer convolutional features for edge detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5872–5881 (2017)

  22. Lopez-Molina, C., Bustince, H., De Baets, B.: Separability criteria for the evaluation of boundary detection benchmarks. IEEE Trans. Image Process. 25(3), 1047–1055 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lopez-Molina, C., De Baets, B., Bustince, H.: Quantitative error measures for edge detection. Pattern Recognit. 46(4), 1125–1139 (2013)

    Article  Google Scholar 

  24. Lopez-Molina, C., Montero, J., Bustince, H., De Baets, B.: Self-adapting weighted operators for multiscale gradient fusion. Inf. Fusion 44, 136–146 (2018)

    Article  Google Scholar 

  25. Lopez-Molina, C., Vidal-Diez de Ulzurrun, G., Baetens, J.M., Van Den Bulcke, J., De Baets, B.: Unsupervised ridge detection using second order anisotropic Gaussian kernels. Signal Process. 116, 55–67 (2015)

    Article  Google Scholar 

  26. Marr, D., Hildreth, E.: Theory of edge detection. Proc. R. Soc. Lond. B 207, 187–217 (1980)

    Article  Google Scholar 

  27. Martin, D.R.: An empirical approach to grouping and segmentation. Ph.D. thesis, University of California, Berkeley (2003)

  28. Martin, D.R., Fowlkes, C.C., Malik, J.: Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans. Pattern Anal. Mach. Intell. 26(5), 530–549 (2004)

    Article  Google Scholar 

  29. McIlhagga, W.: The Canny edge detector revisited. Int. J. Comput. Vis. 91(3), 251–261 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pan, X., Ye, Y., Wang, J., Gao, X., He, C., Wang, D., Jiang, B., Li, L.: Complex composite derivative and its application to edge detection. SIAM J. Imaging Sci. 7(4), 2807–2832 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Perona, P., Malik, J.: Detecting and localizing edges composed of steps, peaks and roofs. In: Proceedings of the International Conference on Computer Vision, pp. 52–57 (1990)

  32. Prewitt, J.M.: Object enhancement and extraction. Picture Process. Psychopictorics 10(1), 15–19 (1970)

    Google Scholar 

  33. Ray, K.: Unsupervised edge detection and noise detection from a single image. Pattern Recognit. 46(8), 2067–2077 (2013)

    Article  Google Scholar 

  34. Roberts, L.G.: Machine perception of three-dimensional solids. In: Optical and Electro-Optical Information Processing, pp. 159–197. MIT Press (1965)

  35. Rosenfeld, A.: A nonlinear edge detection technique. Proc. IEEE 58(5), 814–816 (1970)

    Article  Google Scholar 

  36. Rosenfeld, A., Thurston, M.: Edge and curve detection for visual scene analysis. IEEE Trans. Comput. 20(5), 562–569 (1971)

    Article  Google Scholar 

  37. Shui, P.L., Wang, F.P.: Anti-impulse-noise edge detection via anisotropic morphological directional derivatives. IEEE Trans. Image Process. 26(10), 4962–4977 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Shui, P.L., Zhang, W.C.: Noise-robust edge detector combining isotropic and anisotropic Gaussian kernels. Pattern Recognit. 45(2), 806–820 (2012)

    Article  MATH  Google Scholar 

  39. Shui, P.L., Zhang, W.C.: Corner detection and classification using anisotropic directional derivative representations. IEEE Trans. Image Process. 22(8), 3204–3218 (2013)

    Article  Google Scholar 

  40. Sobel, I.: Camera models and machine perception. Ph.D. thesis, Stanford University (1970)

  41. Torre, V., Poggio, T.A.: On edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(2), 147–163 (1986)

    Article  Google Scholar 

  42. Wang, F.P., Shui, P.L.: Noise-robust color edge detector using gradient matrix and anisotropic Gaussian directional derivative matrix. Pattern Recognit. 52, 346–357 (2016)

    Article  Google Scholar 

  43. Wang, G., De Baets, B.: Edge detection based on the fusion of multiscale anisotropic edge strength measurements. In: Proceedings of the Conference of the European Society for Fuzzy Logic and Technology, vol. 3, pp. 530–536 (2017)

  44. Wang, G., De Baets, B.: Superpixel segmentation based on anisotropic edge strength. J. Imaging 5(6), 57 (2019)

    Article  Google Scholar 

  45. Wang, G., Lopez-Molina, C., De Baets, B.: Blob reconstruction using unilateral second order Gaussian kernels with application to high-ISO long-exposure image denoising. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4817–4825 (2017)

  46. Wang, G., Lopez-Molina, C., Vidal-Diez de Ulzurrun, G., De Baets, B.: Noise-robust line detection using normalized and adaptive second-order anisotropic Gaussian kernels. Signal Process. 160, 252–262 (2019)

    Article  Google Scholar 

  47. Xie, S., Tu, Z.: Holistically-nested edge detection. Int. J. Comput. Vis. 25, 3–18 (2017)

    Article  MathSciNet  Google Scholar 

  48. Xu, Q., Varadarajan, S., Chakrabarti, C., Karam, L.J.: A distributed Canny edge detector: algorithm and FPGA implementation. IEEE Trans. Image Process. 23(7), 2944–2960 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  49. Yang, K.F., Gao, S.B., Guo, C.F., Li, C.Y., Li, Y.J.: Boundary detection using double-opponency and spatial sparseness constraint. IEEE Trans. Image Process. 24(8), 2565–2578 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhang, W., Zhao, Y., Breckon, T.P., Chen, L.: Noise robust image edge detection based upon the automatic anisotropic Gaussian kernels. Pattern Recognit. 63, 193–205 (2017)

    Article  Google Scholar 

  51. Zitnick, C.L., Dollár, P.: Edge boxes: locating object proposals from edges. In: Proceedings of the European Conference on Computer Vision, pp. 391–405 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Lopez-Molina, C. & De Baets, B. Multiscale Edge Detection Using First-Order Derivative of Anisotropic Gaussian Kernels. J Math Imaging Vis 61, 1096–1111 (2019). https://doi.org/10.1007/s10851-019-00892-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-019-00892-1

Keywords

Navigation