Skip to main content
Log in

Image Processing Algorithm Based on Bi-dimensional Local Mean Decomposition

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Because images contain rich characteristic information, adaptive image decomposition algorithms are necessary to achieve multi-scale extraction of image information in multi-scale image decomposition processing. For this reason, based on local mean decomposition (LMD), which has good self-adaptive characteristics, this paper proposes a new adaptive image processing algorithm, bi-dimensional local mean decomposition (BLMD). BLMD can decompose the original image into multiple bi-dimensional product functions (BPFs). Aiming at the decomposition of BLMD, this paper proposes targeted solutions and designs for the extraction of extremum points, screening process interpolation methods, and decomposition and stop conditions involved in BLMD. After fully recognizing the self-adaptive and multi-scale characteristics of BLMD, this paper proposes a variable neighborhood window method to obtain the extreme points in the decomposition process and uses fractal theory to interpolate the image and obtain the corresponding mean surface and other information. Then, the number of non-coincident extreme points on the zero-valued plane projection between adjacent surfaces in the screening process is counted and analyzed, and a stop condition that matches the characteristics of the image is given to ensure the BPF component obtained by decomposition accurately reflects certain feature information of an image. Finally, the BLMD proposed in this paper is formed. Empirical analysis shows this method can quickly decompose and maintain the characteristics of data-drivenness, adaptability and scale consistency of LMD; it can also avoid the disadvantages of other adaptive processing algorithms, such as the bi-dimensional intrinsic mode function obtained by the decomposition of bi-dimensional empirical mode decomposition and the residual failing to completely contain the feature information of the original image.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Gonzalez, R.C.: Digital Image Processing. Pearson Education India, Delhi (2009)

    Google Scholar 

  2. Scarano, F., Riethmuller, M.L.: Advances in iterative multigrid PIV image processing. Exp. Fluids 29(1), S051–S060 (2000)

    Google Scholar 

  3. Daneshvar, S., Ghassemian, H.: MRI and PET image fusion by combining IHS and retina-inspired models. Inf. Fusion 11(2), 114–123 (2010)

    Article  Google Scholar 

  4. Semmlow, J.L., Griffel, B.: Biosignal and Medical Image Processing. CRC Press, Boca Raton, FL (2014)

    Google Scholar 

  5. Schindelin, J., Arganda-Carreras, I., Frise, E., et al.: Fiji: an open-source platform for biological-image analysis. Nat. Methods 9(7), 676–682 (2012)

    Article  Google Scholar 

  6. Gupta, D., Choubey, S.: Discrete wavelet transform for image processing. Int. J. Emerg. Technol. Adv. Eng. 4(3), 598–602 (2015)

    Google Scholar 

  7. Singh, A., Dutta, M.K., ParthaSarathi, M., et al.: Image processing based automatic diagnosis of glaucoma using wavelet features of segmented optic disc from fundus image. Comput. Methods Programs Biomed. 124, 108–120 (2016)

    Article  Google Scholar 

  8. Lai, Z., Qu, X., Liu, Y., et al.: Image reconstruction of compressed sensing MRI using graph-based redundant wavelet transform. Med. Image Anal. 27, 93–104 (2016)

    Article  Google Scholar 

  9. Huang, N.E., Shen, Z., Long, S.R., et al.: The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis. Proc. R. Soc. Lond. A 454(12), 903–995 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Liu, Z., Jin, Y., Zuo, M.J., et al.: Time–frequency representation based on robust local mean decomposition for multicomponent AM-FM signal analysis. Mech. Syst. Signal Process. 95, 468–487 (2017)

    Article  Google Scholar 

  11. Nunes, J.C., Bouaouue, Y., Delechelle, E., et al.: Image analysis by bi-dimensional empirical mode decomposition. Image Vis. Comput. 21(3), 1019–1026 (2003)

    Article  Google Scholar 

  12. Nunes, J.C., Guyot, S., Delechelle, E.: Texture analysis based on local analysis of the bi-dimensional empirical mode decomposition. Mach. Vis. Appl. 16(5), 177–188 (2005)

    Article  Google Scholar 

  13. Bhuiyan, S.M.A., Adhami, R.R., Khan, J.F.: Fast and adaptive bidimensional empirical mode decomposition using order-statistics filter based envelope estimation. EURASIP J. Adv. Signal Process. 2008(1), 1–18 (2008)

    Article  Google Scholar 

  14. Trusiak, M., Wielgus, M., Patorski, K.: Advanced processing of optical fringe patterns by automated selective reconstruction and enhanced fast empirical mode decomposition. Opt. Lasers Eng. 52, 230–240 (2014)

    Article  Google Scholar 

  15. Cai, B., Xiang, J.: Digital image compression based on BEMD and PCA. Comput. Eng. Appl. 47(23), 185–187 (2011)

    Google Scholar 

  16. Zhi, He, Qiang, Wang, Yi, Shen, et al.: Multivariate gray model-based BEMD for hyperspectral image classification. IEEE Trans. Instrum. Meas. 62(5), 889–904 (2013)

    Article  Google Scholar 

  17. An, F.P., Lin, D.C., Zhou, X.W., et al.: Enhancing image denoising performance of bi-dimensional empirical mode decomposition by improving the edge effect. Int. J. Antennas Propag. 2015, 1–12 (2015)

    Article  Google Scholar 

  18. LiHong, Qiao, KaiFu, Niu, Ning, Wang, et al.: Perfect reconstruction image modulation based on BEMD and quaternionic analytic signals. Sci. China Inf. Sci. 54(12), 2602–2614 (2011)

    Article  MathSciNet  Google Scholar 

  19. Hu, J., Wang, X., Qin, H.: Improved, feature-centric EMD for 3D surface modeling and processing. Graph. Models 76(5), 340–354 (2014)

    Article  Google Scholar 

  20. Ye, Q., Xiang, M., Cui, Z.: Fingerprint image enhancement algorithm based on two dimension emd and gabor filter. Procedia Eng. 29, 1840–1844 (2012)

    Article  Google Scholar 

  21. Van Tung, T., Yang, B.-S., Gu, F., et al.: Thermal image enhancement using bi-dimensional empirical mode decomposition in combination with relevance vector machine for rotating machinery fault diagnosis. Mech. Syst. Signal Process. 38(2), 601–614 (2013)

    Article  Google Scholar 

  22. Lahmiri, S.: Image characterization by fractal descriptors in variational mode decomposition domain: application to brain magnetic resonance. Physica A 456, 235–243 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lahmiri, S., Shmuel, A.: Variational mode decomposition based approach for accurate classification of color fundus images with hemorrhages. Opt. Laser Technol. 96, 243–248 (2017)

    Article  Google Scholar 

  24. Guryanov, F., Krylov, A.: Fast medical image registration using bidirectional empirical mode decomposition. Signal Process. Image Commun. 59, 12–17 (2017)

    Article  Google Scholar 

  25. Yang, B.S., Gu, F., Ball, A.: Thermal image enhancement using bi-dimensional empirical mode decomposition in combination with relevance vector machine for rotating machinery fault diagnosis. Mech. Syst. Signal Process. 38(2), 601–614 (2013)

    Article  Google Scholar 

  26. Qin, X., Zheng, J., Hu, G., et al.: Multi-focus image fusion based on window empirical mode decomposition. Infrared Phys. Technol. 85, 251–260 (2017)

    Article  Google Scholar 

  27. Lu, Y., Lu, R.: Fast bi-dimensional empirical mode decomposition as an image enhancement technique for fruit defect detection. Comput. Electron. Agric. 152, 314–323 (2018)

    Article  Google Scholar 

  28. Qin, Y., Qiao, L., Wang, Q., et al.: Bidimensional empirical mode decomposition method for image processing in sensing system. Comput. Electr. Eng. 68, 215–224 (2018)

    Article  Google Scholar 

  29. Damerval, Christophe: A fast algorithm for bi-dimensional EMD. IEEE Signal Process. Lett. 12(10), 701–704 (2005)

    Article  Google Scholar 

  30. Liu, Z., Peng, S.: Boundary processing of bi-dimensional EMD using texture synthesis. IEEE Signal Process. Lett. 12(1), 33–36 (2005)

    Article  Google Scholar 

  31. Guang-tao, Ge, En-fang, Sang, Zhuo-fu, Liu, et al.: Novel BEMD criterion for stopping sifting process. J. Data Acquis. Process. 25(2), 195–200 (2010)

    Google Scholar 

  32. Wu, Z., Huang, N.E., Chen, X.: The multi-dimenstional ensemble empirical mode decomposition method. Adv. Adapt. Data Anal. 1(5), 339–372 (2009)

    Article  MathSciNet  Google Scholar 

  33. Rilling, G., Flandrin, P., Gancalves, P.: On empirical mode decomposition and its algorithms. In: Proceedings of IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing, vol. 3, pp. 8–11 (2003)

  34. Yang, Z.H., Qi, D.X., Yang, L.H.: Signal period analysis based on Hilbert–Huang transform and its application to texture analysis. In: Proceedings of the Third International Conference on Image and Graphics, pp. 430–433. IEEE (2004)

  35. Xiong, C.Z., Xu, J.Y., Zou, J.C., et al.: Texture classification based on EMD and FFT. J. Zhejiang Univ. (Sci. A) 7(9), 1516–1521 (2006)

    Article  MATH  Google Scholar 

  36. Cuiyun, L., Pan, H., Hongbing, J.: A novel surface interpolation approach for bi-dimensional empirical mode decomposition. In: International Conference on Network Computing and Information Security (NCIS), pp. 335–338 (2011)

  37. Nan, D., Bi, D., Xu, Y., et al.: Retinex color image enhancement based on adaptive bi-dimensional empirical mode decomposition. J. Comput. Appl. 31(6), 1552–1559 (2011)

    Google Scholar 

  38. Kim, D., Park, M., Oh, H.S.: Bi-dimensional statistical empirical mode de-composition. IEEE Signal Process. Lett. 19(4), 191–194 (2012)

    Article  Google Scholar 

  39. Smith, J.S.: The local mean decomposition and its application to EEG perception data. J. R. Soc. Interface 2(5), 443–454 (2005)

    Article  Google Scholar 

  40. Mandelbrot, B.B.: The variation of certain speculative prices. In: Mandelbrot, B.B. (ed.) Fractals and Scaling in Finance. Springer, New York (1997)

    Chapter  MATH  Google Scholar 

  41. Dekking, M., Lévy-Véhel, J., Lutton, E., Tricot, C. (eds.): Fractals: Theory and Applications in Engineering. Theory and Applications in Engineering. Springer, Berlin (2012)

    Google Scholar 

  42. Torres, I.C., Rubio, J.M.A., Ipsen, R.: Using fractal image analysis to characterize microstructure of low-fat stirred yoghurt manufactured with microparticulated whey protein. J. Food Eng. 109(4), 721–729 (2012)

    Article  Google Scholar 

  43. Brodatz, P.: Textures: A Photographic Album for Artists and Designers. Dover Publications, New York (1966)

    Google Scholar 

Download references

Acknowledgements

This paper is supported by National Natural Science Foundation of China (No. 61701188).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-Ping An.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, FP., Liu, ZW. Image Processing Algorithm Based on Bi-dimensional Local Mean Decomposition. J Math Imaging Vis 61, 1243–1257 (2019). https://doi.org/10.1007/s10851-019-00899-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-019-00899-8

Keywords

Navigation