Skip to main content
Log in

New Type of Gegenbauer–Hermite Monogenic Polynomials and Associated Clifford Wavelets

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Nowadays, 3D images processing constitutes a challenging topic in many scientific fields such as medicine, computational physics, informatics. Therefore, the construction of suitable functional bases that allow computational aspects to be easily done is a necessity. Wavelets and Clifford algebras are ones of the most import mathematical tools for achieving such necessities. In the present work, new classes of wavelet functions are presented in the framework of Clifford analysis. Firstly, some classes of new monogenic polynomials are provided based on two-parameter weight functions. Such classes englobe the well-known Gegenbauer and Hermite ones. The discovered polynomial sets are next applied to introduce new wavelet functions. Reconstruction formula and Fourier–Plancherel rules have been proved. Computational concrete examples are developed by means of some illustrative examples with graphical representations of the Clifford mother wavelets in some cases. These discovered wavelets have been applied by the next for modeling some biomedical signals such as EEG, ECG and proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. National Bureau of Standards, Applied Mathematics Series, 55, USA (1964)

  2. Abreu-Blaya, R., Bory-Reyes, J., Bosch, P.: Extension Theorem for Complex Clifford Algebras-Valued Functions on Fractal Domains, Boundary Value Problems, Article ID 513186, 9 pages (2010)

  3. Almeida, J.B.: Can physics laws be derived from monogenic functions? arXiv:physics/0601194v1 (2006)

  4. Altaiski, M., Mornev, M., Polozov, O.: Wavelet analysis of DNA sequence. Genet. Anal. 12(1996), 165–168 (1996)

    Google Scholar 

  5. Antoine, J.-P., Murenzi, R., Vandergheynst, P.: Two-dimensional directional wavelets in image processing. Int. J. Imaging Syst. Technol. 7(3), 152–165 (1996)

    Google Scholar 

  6. Arfaoui, S.: New Monogenic Gegenbauer Jacobi Polynomials And Associated Spheroidal Wavelets, Doctoral Thesis in Mathematics, University of Monastir, Tunisia, Faculty of Sciences, July 26 (2017)

  7. Arfaoui, S., Mabrouk, ABen: Some ultraspheroidal monogenic Clifford Gegenbauer Jacobi polynomials and associated wavelets. Adv. Appl. Clifford Algebra 27(3), 2287–2306 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Arfaoui, S., Mabrouk, A.: Some old orthogonal polynomials revisited and associated wavelets: two-parameters Clifford-Jacobi polynomials and associated spheroidal wavelets. Acta Applicandae Mathematicae 155(1), 177–195 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Arfaoui, S., Mabrouk, A.B.: Some Generalized Clifford–Jacobi Polynomials and Associated Spheroidal Wavelets. arXiv:1704.03513 (2017)

  10. Arfaoui, S., Rezgui, I., Mabrouk, A.B.: Harmonic wavelet analysis on the sphere, spheroidal wavelets, Degryuter (2016). ISBN 978-11-048188-4

  11. Baleanu, D.: Wavelet Transforms and Their Recent Applications in Biology and Geoscience. ISBN 978-953-51-0212-0, 310 pages, InTech Publisher (2012)

  12. Baspinar, E., Citti, G., Sarti, A.: A geometric model of multi-scale orientation preference maps via Gabor functions. J. Math. Imaging Vis. 60, 900–912 (2018). https://doi.org/10.1007/s10851-018-0803-3

    Article  MathSciNet  MATH  Google Scholar 

  13. Bekkers, E., Duits, R., Berendschot, T., Romeny, B.H.: A multi-orientation analysis approach to retinal vessel tracking. J. Math. Imaging Vis. 49(3), 583–610 (2014)

    MATH  Google Scholar 

  14. Mabrouk, A. Ben, Rabbouch, B., Saadaoui, F.: A wavelet based methodology for predicting transmembrane segments. Poster Session, the International Conference of Engineering Sciences for Biology and Medicine, 1–3 May Monastir, Tunisia (2015)

  15. Bernstein, S.: Clifford continuous wavelet transforms in \({\cal{L}}0,2\) and \({\cal{L}}0,3\). AIP Conf. Proc. 1048, 634 (2008). https://doi.org/10.1063/1.2991006

    Article  Google Scholar 

  16. Bin, Y., Zhang, Y.: A simple method for predicting transmembrane proteins based on wavelet transform. Int. J. Biol. Sci. 9(1), 22–33 (2013)

    Google Scholar 

  17. Bin, Y., Zhang, Y.: On the prediction of transmembrane helical segments in membrane proteins. World Acad. Sci. Eng. Technol. 37, 554–557 (2010)

    Google Scholar 

  18. Bodmann, B.G., Hoffman, D.K., Kouri, D.J., Papadakis, M.: Hermite distributed approximating functionals as almost-ideal low-pass filters. Sampl. Theory Signal Image Process. 1(1), 0–50 (2002)

    MathSciNet  MATH  Google Scholar 

  19. Brackx, F., Chisholm, J.S.R., Soucek, v: Clifford Analysis and Its Applications NATO Science Series, Series II: Mathematics, Physics and Chemistry, vol. 25. Springer, Berlin (2000)

    Google Scholar 

  20. Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis. Pitman Publication, Trowbridge (1982)

    MATH  Google Scholar 

  21. Brackx, F., De Schepper, N., Sommen, F.: The Clifford–Gegenbauer polynomials and the associated continuous wavelet transform. Integral Transforms and Special Functions 15(5), 387–404 (2004)

    MathSciNet  MATH  Google Scholar 

  22. Brackx, F., De Schepper, N., Sommen, F.: The two-dimensional Clifford–Fourier transform. J. Math. Imaging 26, 5–18 (2006)

    MathSciNet  MATH  Google Scholar 

  23. Brackx, F., De Schepper, N., Sommen, F.: The Fourier Transform in Clifford analysis. Adv. Imaging Electron Phys. 156, 55–201 (2009)

    MATH  Google Scholar 

  24. Brackx, F., De Schepper, N., Sommen, F.: Clifford-Jacobi Polynomials and the associated continuous wavelet transform in Eucllidean space. In: Qian, T., Vai, M.I., Xu, Y. (eds.) Wavelet Analysis and Applications. Applied and Numerical Harmonic Analysis, pp. 185–198. Birkhäuser, Basel (2006)

    MATH  Google Scholar 

  25. Brackx, F., Schepper, N.De, Sommen, F.: The Clifford–Laguerre continuous wavelet transform. Bull. te Belgian Math. Soc.-Simon Stvin 11(2), 201–215 (2004)

    MathSciNet  MATH  Google Scholar 

  26. Brackx, F., Sommen, F.: Clifford–Hermite wavelets in Euclidean space. J. Fourier Anal. Appl. 6(3), 299–310 (2000)

    MathSciNet  MATH  Google Scholar 

  27. Brackx, F., Sommen, F.: The generalized Clifford–Hermite continuous wavelet transform. Adv. Appl. Clifford Algebras 11(51), 219–231 (2001)

    MathSciNet  MATH  Google Scholar 

  28. Brackx, F., Schepper, N. De, Sommen, F.: Clifford-Hermite and two-dimensional Clifford–Gabor filters for early vision. In (digital) Proceedings 17th International Conference on the Application of Computer Science and Mathematics in Architecture and Civil Engineering (K. Gürlebeck and C. Könke, eds.), July 12–14, Bauhaus-Universität Weimar (2006)

  29. Brackx, F., Hitzer, E., Sangwine, S.J.: History of quaternion and Clifford-fourier transforms and wavelets, in Quaternion and Clifford fourier transforms and wavelets. Trends Math. 27, 11–27 (2013)

    MATH  Google Scholar 

  30. Bujack, R., De Bie, H., De Schepper, N., Scheuermann, G.: Products, convolution, for Hypercomplex Fourier Transforms. J. Math. Imaging Vis. 48, 606–624 (2013). https://doi.org/10.1007/s10851-013-0430-y

    Article  MATH  Google Scholar 

  31. Bujack, R., Scheuermann, G., Hitzer, E.: A General Geometric Fourier Transform. In: Hitzer, E., Sangwine, S.J. (eds.) Quaternion and Clifford Fourier transforms and wavelets, Trends in Mathematics 27, pp. 155–176. Birkhauser, Basel (2013). https://doi.org/10.1007/978-3-0348-0603-9_-8

    Chapter  MATH  Google Scholar 

  32. Bujack, R., Scheuermann, G., Hitzer, E.: A general geometric Fourier transform convolution theorem. Adv. Appl. Clifford Algebras 23(1), 15–38 (2013). https://doi.org/10.1007/s00006-012-0338-4

    Article  MathSciNet  MATH  Google Scholar 

  33. Carré, P., Berthier, M.: Chapter 6, Color Representation and Processes with Clifford Algebra. In: Fernandez-Maloigne, C. (ed.) Advanced Color Image Processing and Analysis, pp. 147–179. Springer, New York (2013)

    Google Scholar 

  34. Carré, P., Denis, P., Fernandez-Maloigne, C.: Spatial color image processing using Clifford algebras: application to color active contour. Signal, Image Video Process. 8(7), 1357–1372 (2012)

    Google Scholar 

  35. Cattani, C., Kudreyko, A.: Harmonic wavelet method towards solution of the Fredholm type integral equations of the second kind. Appl. Math. Comput. 215(12), 4164–4171 (2010)

    MathSciNet  MATH  Google Scholar 

  36. Cattani, C.: Signorini Cylindrical Waves and Shannon Wavelets, Advances in Numerical Analysis, Volume 2012, Article ID 731591, 24 pages

  37. Cattani, C.: Harmonic wavelet approximation of random, fractal and high frequency signals. Telecommun. Syst. 43(3–4), 207–217 (2010)

    Google Scholar 

  38. Cattani, C.: Fractals and hidden symmetries in DNA. Mathematical Problems in Engineering, Vol. 2010, article ID 507056, 1–31

    MathSciNet  MATH  Google Scholar 

  39. Cattani, C.: Wavelet algorithms for DNA analysis. In Algorithms in Computational Molecular Biology: Techniques, Approaches and Applications. M. Elloumi and A. Y. Zomaya, (Eds.), Wiley Series in Bioinformatics, John Wiley & Sons, pp. 799–842

  40. Cattani, C.: On the Existence of Wavelet Symmetries in Archaea DNA. Computational and Mathematical Methods in Medicine, Vol. 2012, Article ID 673934, 1–21

    MathSciNet  MATH  Google Scholar 

  41. Cattani C.: Complexity and symmetries in DNA sequences. In Handbook of Biological Discovery, Elloumi, M. & Zomaya, A. Y. (Eds.), Wiley Series in Bioinformatics, John Wiley & Sons, Hoboken, pp. 700–742

  42. Cattani, C., Pierro, G.: Complexity on Acute Myeloid Leukemia mRNA Transcript Variant. Mathematical Problems in Engineering, Vol. 2011, article ID 379873, 1–16

    MathSciNet  MATH  Google Scholar 

  43. Cattani, C., Pierro, G.: On the fractal geometry of DNA by the binary image analysis. Bull. Math. Biol. 75(9), 28 (2013)

    MathSciNet  MATH  Google Scholar 

  44. Cattani, C., Bellucci, M., Scalia, M., Mattioli, G.: Wavelet analysis of correlation in DNA sequences. Izvestia Vysshikh Uchebnykh Zavedenii Radioelektronika 29, 50–58 (2006)

    Google Scholar 

  45. Chen, C.P., Rost, B.: State-of-the-art in membrane protein prediction. Appl. Bioinform. 1, 21–35 (2002)

    Google Scholar 

  46. Chen, Y., Yang, B., Dong, J.: Time-series prediction using a local wavelet neural network. Neurocomputing 69, 449–465 (2006)

    Google Scholar 

  47. Colombo, F., Sabadini, I., Sommen, F., Struppa, D.C.: Analysis of Dirac Systems and Computational Algebra, Progress in Mathematical Physics, vol. 39. Birkhäuser, Boston (2004)

    MATH  Google Scholar 

  48. Cserzäo, M., Wallin, E., Simon, I., von Heijne, G., Elofsson, A.: Prediction of transmembrane a-helices in prokaryotic membrane proteins: the dense alignment surface method. Protein Eng. 10, 673–676 (1997)

    Google Scholar 

  49. Bie, H. De: Clifford algebras, Fourier transforms and quantum mechanics. arXiv:1209.6434v1 (2012)

  50. Bie, H. De, Xu, Y.: On the Clifford-Fourier transform. arXiv:1003.0689 (2010)

  51. De Schepper, N.: The generalized Clifford–Gegenbauer polynomials revisited. Adv. Appl. Clifford Algebras 19, 253–268 (2009)

    MathSciNet  MATH  Google Scholar 

  52. Delanghe, R.: Clifford analysis: history and perspective. Comput. Methods Funct. Theory 1(1), 107–153 (2001)

    MathSciNet  MATH  Google Scholar 

  53. Tunjung, N. Dian, Arifin, A. Zainal, Soelaiman, R.: Medical image segmentation using generalized gradient vector flow and clifford geometric algebra. International Conference on Biomedical Engineering, Surabaya, Indonesia, November 11, 5 pages (2008)

  54. Di Claudio, E.D., Jacovitti, G., Laurenti, A.: On the inter-conversion between Hermite and Laguerre local image expansions. IEEE Trans. Image Process. 20(12), 3553–3565 (2011)

    MathSciNet  MATH  Google Scholar 

  55. Duits, R., Felsberg, M., Granlund, G., ter Romeny, B.H.: Image analysis and reconstruction using a wavelet transform constructed from a reducible representation of the Euclidean motion group. Int. J. Comput. Vis. 72(1), 79–102 (2006). https://doi.org/10.1007/s11263-006-8894-5

    Article  Google Scholar 

  56. Escalante-Ramirez, B.: The Hermite transform as an efficient model for local image analysis: an application to medical image fusion. Comput. Electr. Eng. 34, 99–110 (2008)

    MATH  Google Scholar 

  57. Estudillo-Romero, A., Escalante-Ramirez, B.: The Hermite transform: an alternative image representation model for Iris Recognition. pp. 86–93. In Progress in Pattern Recognition, Image Analysis and Applications, José Ruiz-Shulcloper Walter G. Kropatsch (Eds.), 13th Iberoamerican Congress on Pattern Recognition, CIARP 2008, Havana, Cuba, September 9–12, 2008 Proceedings. Lecture Notes in Computer Science 5197. Springer (2008)

  58. Felsberg, M., Duits, R., Florack, L.: The monogenic scale space on a rectangular domain and its features. Int. J. Comput. Vis. 64(2–3), 187–201 (2005). https://doi.org/10.1007/s11263-005-1843-x

    Article  MATH  Google Scholar 

  59. Felsberg, M., Sommer, G.: The monogenic signal. IEEE Trans. Signal Process. 49(12), 3136–3144 (2001)

    MathSciNet  MATH  Google Scholar 

  60. Fischer, P.: Multiresolution analysis for 2D turbulence Part 1: wavelets vs cosince packets, a comparative study. Discret. Contin. Dyn. Syst. B 5, 659–686 (2005)

    MATH  Google Scholar 

  61. Fischer, P., Baudoux, G., Wouthers, J.: Wavepred: a wavelet-based algorithm for the prediction of transmembrane proteins. Commun. Math. Sci. 1(1), 44–56 (2003)

    MathSciNet  MATH  Google Scholar 

  62. Fletcher, P.: Discrete wavelets with Quaternion and Clifford coefficients. Adv. Appl. Clifford Algebras 28, 59 (2018). https://doi.org/10.1007/s00006-018-0876-5

    Article  MathSciNet  MATH  Google Scholar 

  63. Gao, T., Liu, Z.-g., Gao, W.-ch., Zhang, J.: A robust technique for background subtraction in traffic video. In Advances in Neuro-Information Processing, Mario Köppen Nikola Kasabov George Coghill (Eds.), 15th International Conference, ICONIP 2008 Auckland, New Zealand, November 25–28, Revised Selected Papers, Part II 13, Springer, pp. 736–744 (2008)

  64. Gao, T., Liu, Z.-G., Yue, S.-H., Mei, J.-Q., Zhang, J.: Traffic video-based moving vehicle detection and tracking in the complex environment. Cybern. Syst. Int. J. 40(7), 569–588 (2009)

    Google Scholar 

  65. Gu, Y. H.: Adaptive multiscaled polynomial transform for image compression based on local image property. (IPO rapport; Vol. 931). Eindhoven: Technische Universiteit Eindhoven, Institute for Perception Research, 56 pages (1993)

  66. Hitzer, E.: New developments in Clifford Fourier transforms. In: Mastorakis, N.E., Pardalos, P.M., Agarwal, R.P., Kocinac, L. (eds.) Advances in Applied and Pure Mathematics, Proceedings of the 2014 International Conference on Pure Mathematics, Applied Mathematics, Computational Methods (PMAMCM 2014), Santorini Island, Greece, July 17–21, 2014, Mathematics and Computers in Science and Engineering Series, Vol. 29, pp. 19–25 (2014)

  67. Hitzer, E.: Clifford (Geometric) Algebra Wavelet Transform. In: Skala V., Hildenbrand, D. (eds.) Proc. of GraVisMa 2009, 02–04 Sep. 2009, Plzen, Czech Republic, pp. 94–101 (2009)

  68. Heydari, M.H., Hooshmandasl, M.R., Cattani, C., Li, M.: Legendre Wavelets Method for Solving Fractional Population Growth Model in a Closed System, Hindawi Publishing Corporation Mathematical Problems in Engineering, Volume 2013, Article ID 161030, 8 pages

  69. Heydari, M.H., Hooshmandasl, M.R., Shakiba, A., Cattani, C.: Legendre wavelets Galerkin method for solving nonlinear stochastic integral equations. Nonlinear Dyn. 85, 1185–1202 (2016)

    MathSciNet  MATH  Google Scholar 

  70. Huang, Z.J., Huang, G.H., Cheng, L.l: Medical image segmentation of blood vessels based on Clifford algebra and Voronoi diagram. J. Softw. 13(6), 361–373 (2018)

    MathSciNet  Google Scholar 

  71. Mahmoud, M.M., Ibrahim, Mabrouk, Ben, A., Hashim, M.H.A.: Wavelet multifractal models for transmembrane proteins’ series. Int. J. Wavelets Multires Inf. Process. 14(6), 36 (2016)

    MATH  Google Scholar 

  72. Ikeda, M., Arai, M., Okuno, T., Shimizu, T.: TMPDB: a database of experimentally-characterized transmembrane topologies. Nucleic Acids Res. 31, 406–409 (2003)

    Google Scholar 

  73. Janssen, M.H.J., Janssen, A.J.E.M., Bekkers, E.J., Bescos, J.O., Duits, R.: Design and processing of invertible orientation scores of 3D images. J. Math. Imaging Vis. 60, 1427–1458 (2018)

    MathSciNet  MATH  Google Scholar 

  74. Kindratenko, V.V.: On using functions to describe the shape. J. Math. Imaging Vis. 18, 225–245 (2003)

    MathSciNet  MATH  Google Scholar 

  75. Khobragade, K.A., Kale, K.V.: Multi-wavelet based feature extraction Algorithm for Iris recognition. Int. J. Eng. Innov. Technol. (IJEIT) 3(12), 368–373 (2014)

    Google Scholar 

  76. Kyte, J., Doolittle, R.F.: A simple method for displaying the hydrophathic character of a protein. J. Mol. Biol. 157, 105–132 (1982)

    Google Scholar 

  77. Lahar, S.: Clifford Algebra: a visual introduction. A topnotch WordPress.com site, March 18 (2014)

  78. Leibon, G., Rockmore, D.N., Park, W., Taintor, R., Chirikjian, G.S.: A fast Hermite transform. Theor. Comput. Sci. 409(2), 211–228 (2008)

    MathSciNet  MATH  Google Scholar 

  79. Levin, E., Lubinsky, D.: Orthogonal polynomials for exponential weights \(x^{2\rho }e^{-2{\cal{Q}}(x)}\) on \([0, d)]\). J. Approx. Theory 134, 199–256 (2005)

    MathSciNet  MATH  Google Scholar 

  80. Li, M., He, Y., Long, Y.: Analogue implementation of wavelet transform using discrete time switched-current filters. In: M. Zhu (Ed.): Electrical Engineering and Control, LNEE 98, pp. 677–682

  81. Li, L.-W., Kang, X.-K., Leong, M.-S.: Spheroidal Wave Functions in Electromagnetic Theory. Wiley-Interscience Publication, Hoboken (2002)

    Google Scholar 

  82. Li, L., Tang, Y.Y.: Wavelet-Hough transform with applications in edge and target detections. Int. J. Wavelets Multiresolut Inf. Process. 4, 567–587 (2006)

    MathSciNet  MATH  Google Scholar 

  83. Lina, J.-M.: Image processing with complex Daubechies wavelets. J. Math. Imaging Vis. 7, 211–223 (1997)

    MathSciNet  Google Scholar 

  84. Rahman, S.M.Mahbubur, Ahmad, M.O., Swamy, M.N.S.: A new statistical detector for DWT-based additive image watermarking using the Gauss–Hermite expansion. IEEE Trans. Image Process. 18(8), 1782–1796 (2009)

    MathSciNet  MATH  Google Scholar 

  85. Malonek, H.R., Falcão, M.I.: 3D-Mappings Using Monogenic Functions. ICNAAM 3–7 (2006)

  86. Martens, J.-B.: The Hermite transform: a survey. EURASIP J. Appl. Signal Process., Article ID 26145, pp. 1–20 (2006)

  87. Mawardi, B.: Construction of quaternion-valued wavelets. Matematika 26(1), 107–114 (2010)

    MathSciNet  Google Scholar 

  88. Michel, V.: Lectures on constructive approximation. Birkhäuser, Basel (2013)

    Google Scholar 

  89. Morais, J., Kou, K.I., SpröSSig, W.: Generalized holomorphic Szegö kernel in 3D spheroids. Comput. Math. Appl. 65(4), 576–588 (2013)

    MathSciNet  MATH  Google Scholar 

  90. Moussa, M.-M.: Calcul efficace et direct des représentations de maillages 3D utilisant les harmoniques sphériques, Thèse de Doctorat de l’université Claude Bernard, Lyon 1, France (2007)

  91. Osipov, A., Rokhlin, V., Xiao, H.: Prolate Spheroidal Wave Functions of Order Zero. Mathematical Tools for Bandlimited Approximation, Applied Mathematical Sciences, vol. 187. Springer, Berlin (2013)

    MATH  Google Scholar 

  92. Paula, I.C., Medeiros, F.N.S., Bezerra, F.N., Ushizima, D.M.: Multiscale corner detection in planar shapes. J. Math. Imaging Vis. 45, 251–263 (2013)

    MathSciNet  Google Scholar 

  93. Park, W., Leibon, G., Rockmore, D.N., Chirikjian, G.S.: Accurate image rotation using Hermite expansions. IEEE Trans. Image Process. 18(9), 1988–2003 (2009)

    MathSciNet  MATH  Google Scholar 

  94. Pena, D. P.: Cauchy-Kowalevski extensions, Fueter’s theorems and boundary values of special systems in Clifford analysis. A Ph.D. thesis in Mathematics, Ghent University (2008)

  95. Rizo-Rodríguez, D., Mendez-Vazquez, H., Garcia-Reyes, E.: Illumination invariant face recognition using quaternion-based correlation filters. J. Math. Imaging Vis. 45, 164–175 (2013)

    MathSciNet  MATH  Google Scholar 

  96. Saillard, J., Bunel, G.: Apport des fonctions sphéroidales pour l’estimation des paramètres d’une cible radar. 12ème Colloque Gretsi-Juan-Les-Pins, 12–19 Juin 4 pages (1989)

  97. Sau, K., Basaka, R. K., Chanda, A.: Image compression based on block truncation coding using Clifford algebra. International Conference on Computational Intelligence: Modeling Techniques and Applications (CIMTA) 2013, Procedia Technology 10 (2013), pp. 699–706

    Google Scholar 

  98. Shi, Y.G.: Orthogonal polynomials for Jacobi-Exponential weights. Acta Math. Hungar. 140(4), 363–376 (2013)

    MathSciNet  MATH  Google Scholar 

  99. Skibbe, H., Reisert, M.: Spherical tensor algebra: a toolkit for 3D image processing. J. Math. Imaging Vis. 58(3), 349–381 (2017)

    MathSciNet  MATH  Google Scholar 

  100. Soulard, R., Carré, P.: Characterization of color images with multiscale monogenic maxima. IEEE Trans. Pattern Anal. Mach. Intell. 40(10), 2289–2302 (2018)

    Google Scholar 

  101. Stankovic, S., Stankovic, L., Orovic, I.: Compressive sensing approach in the Hermite transform domain. Mathematical Problems in Engineering (2015), Article ID 286590, 9 pages. https://doi.org/10.1155/2015/286590

    MathSciNet  MATH  Google Scholar 

  102. Stratton, J.A.: Spheroidal functions. Physics 21, 51–56 (1935)

    MATH  Google Scholar 

  103. Stratton, J.A., Morse, P.M., Chu, L.J., Little, J.D.C., Corbato, F.J.: Spheroidal Wave Functions. Wiley, New York (1956)

    MATH  Google Scholar 

  104. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis On Euclidien Spaces. Princeton University Press, Princeton, New Jersey (1971)

    MATH  Google Scholar 

  105. Suk, T.: 2D and 3D Image Analysis by Moments. Ph.D. Thesis in Informatics and Cybernetics. Institute of Information Theory and Automation, Czech Republic Academy of Sciences (2016)

  106. Unser, M., Sage, D., Van De Ville, D.: Multiresolution monogenic signal analysis using the Riesz–Laplace wavelet transform. IEEE Trans. Image Process. 18(11), 2402–2418 (2009)

    MathSciNet  MATH  Google Scholar 

  107. Van De Ville, D., Sage, D., Balac, K., Unser, M.: The Marr wavelet pyramid and multiscale directional image analysis. 16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25–29, 5 pages (2008)

  108. Van De Ville, D., Unser, M.: Complex wavelet bases, steerability, and the Marr-Like pyramid. IEEE Trans. Image Process. 17(11), 2063–2080 (2008)

    MathSciNet  MATH  Google Scholar 

  109. Venkatesh, Y.V.: Hermite polynomials for signal reconstruction from zero-crossings, 1. One-dimensional signals. IEEE Proceed. I Commun. Speech Vis. 139(6), 587–596 (1992)

    Google Scholar 

  110. Venkatesh, Y.V., Ramani, K., Nandini, R.: Wavelet array decomposition of images using a Hermite sieve. Sadhana 18(2), 301–324 (1993)

    Google Scholar 

  111. Ville, J.: Theorie et applications de la notion de signal analytique (theory and applications of the notion of analytic signal). Cables et transmission 2(1), 61–74 (1948)

    Google Scholar 

  112. Wang, R.: Introduction to Orthogonal Transforms With Applications in Data Processing and Analysis. Cambridge University Press, Cambridge (2012)

    MATH  Google Scholar 

  113. Wang, L., Hu, R., Zhang, J., Ma, Y.: On the Vortex Detection Method Using Continuous Wavelet Transform with Application to Propeller Wake Analysis. Mathematical Problems in Engineering (2015), Article ID 242917, 9 pages. https://doi.org/10.1155/2015/242917

    MathSciNet  MATH  Google Scholar 

  114. Wang, X.-Y., Zhao, L., Niu, P.-P., Fu, Z.-K.: Image denoising using Gaussian scale mixtures with Gaussian–Hermite PDF in steerable pyramid domain. J. Math. Imaging Vis. 39, 245–258 (2011)

    MathSciNet  MATH  Google Scholar 

  115. Wietzke, L., Sommer, G.: The signal multi-vector. J. Math. Imaging Vis. 37, 132–150 (2010)

    MathSciNet  Google Scholar 

  116. Yang, B., Flusser, J., Kautsky, J.: Rotation of 2D orthogonal polynomials. Pattern Recognit. Lett. 102, 44–49 (2018)

    Google Scholar 

  117. Yang, B., Flusser, J., Suk, J.T.: Steerability of Hermite kernel. Int. J. Pattern Recognit. Artif. Intell. 27(4), 25 (2013)

    Google Scholar 

  118. Yang, B., Suk, T., Dai, M., Flusser, J.: Chapter 7, \(2D\) and \(3D\) Image Analysis by Gaussian-Hermite Moments. In Moments and Moment Invariants—Theory and Applications. G.A. Papakostas (ed.), GCSR Vol. 1, Science Gate Publishing, pp. 143–173 (2014)

  119. Yu, M., Zhu, Q.: Tilt correction method of text image based on wavelet pyramid. AIP Conference Proceedings 1834, 040028 7 pages (2017)

  120. Zhang, B., Zhang, L., Zhang, L., Karray, F.: Retinal vessel extraction by matched filter with first-order derivative of Gaussian. Comput. Biol. Med. 40, 438–445 (2010)

    Google Scholar 

  121. Zou, C., Kou, K. I.: Hypercomplex signal energy concentration in the spatial and quaternionic linear canonical frequency domains. arXiv:1609.00890

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrine Arfaoui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Lemma 2

Denote firstly by I the left-hand-side integral. Recall next that for \(\lambda \in {\mathbb {R}}\), the Bessel function \(J_{\lambda }\) may be written in the integral form

$$\begin{aligned} J_{\lambda }(x)=\dfrac{1}{2\pi }\displaystyle \int _{-\pi }^{\pi }e^{-i(\lambda t-xsint)}\mathrm{d}t. \end{aligned}$$

Next, as the measure \(\mathrm{d}\sigma \) is invariant under rotations, we may assume without loss of the generality that \(\xi =(1,0,\dots ,0)\). As a result, we obtain

$$\begin{aligned} I=\displaystyle \int _{S^{m-1}}e^{-ir\rho \cos \theta }\mathrm{d}\sigma (\omega ), \end{aligned}$$

where \(\theta \) is the angle \((\omega ,e_1)\), with \(e_1=(1,0,\dots ,0)\). In spherical coordinates, this means that

$$\begin{aligned} I=\omega _{m-1}\displaystyle \int _{0}^{\pi }e^{-ir\rho \cos \theta } \sin ^{m-2}\theta \,d\theta . \end{aligned}$$

Denoting next \(t=\cos \theta \), we get

$$\begin{aligned} I=\omega _{m-1}\displaystyle \int _{-1}^{1}e^{-ir\rho t}(1-t^2)^{(m-3)/2}\mathrm{d}t. \end{aligned}$$

Observing next that the area \(\omega _{m-1}\) of the unit sphere \(S^{m-1}\) is

$$\begin{aligned} \omega _{m-1}=\dfrac{\pi ^{\frac{m-3}{2}}}{\varGamma (\frac{m-1}{2})} \end{aligned}$$

and in the other hand,

$$\begin{aligned} J_\lambda (x)=\dfrac{|\frac{x}{2}|^{\lambda }}{\pi ^{1/2} \varGamma (\lambda +1/2)}\displaystyle \int _{-1}^{1}e^{-ixt}(1-t^2)^{\lambda -1/2}\mathrm{d}t, \end{aligned}$$

we obtain the desired result. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arfaoui, S., Ben Mabrouk, A. & Cattani, C. New Type of Gegenbauer–Hermite Monogenic Polynomials and Associated Clifford Wavelets. J Math Imaging Vis 62, 73–97 (2020). https://doi.org/10.1007/s10851-019-00914-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-019-00914-y

Keywords

Navigation