Skip to main content

Advertisement

Log in

Computed Tomography Reconstruction with Uncertain View Angles by Iteratively Updated Model Discrepancy

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We propose a new model and a corresponding iterative algorithm for Computed Tomography (CT) when the view angles are uncertain. The uncertainty is described by an additive model discrepancy term which is included in the data fidelity term of a total variation regularized variational model. We approximate the model discrepancy with a Gaussian distribution. Our iterative algorithm alternates between updating the CT reconstruction and parameters of the model discrepancy. By assuming that the uncertainties in the view angles are independent we achieve a covariance matrix structure that we can take advantage of in a stochastic primal dual method to greatly reduce the computational work compared to classical primal dual methods. Using simulations with 2D problems we demonstrate that our method is able to reduce the reconstruction error and improve the visual quality, compared to methods that ignore the uncertainties in the angles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arridge, S.R., Kaipio, J.P., Kolehmainen, V., Schweiger, M., Somersalo, E., Tarvainen, T., Vauhkonen, M.: Approximation errors and model reduction with an application in optical diffusion tomography. Inverse Probl. 22(1), 175–195 (2006)

    Article  MathSciNet  Google Scholar 

  2. Basu, S., Bresler, Y.: Uniqueness of tomography with unknown view angles. IEEE Trans. Image Process. 9(6), 1094–1106 (2000)

    Article  MathSciNet  Google Scholar 

  3. Benning, M., Burger, M.: Modern regularization methods for inverse problems. Acta Numer. 27, 1–111 (2018)

    Article  MathSciNet  Google Scholar 

  4. Brandt, C., Seppänen, A.: Recovery from errors due to domain truncation in magnetic particle imaging: approximation error modeling approach. J. Math. Imaging Vis. 60(8), 1196–1208 (2018)

    Article  MathSciNet  Google Scholar 

  5. Buzug, T.M.: Computed Tomography: From Photon Statistics to Modern Cone-Beam CT. Springer, Berlin (2008)

    Google Scholar 

  6. Calvetti, D., Dunlop, M., Somersalo, E., Stuart, A.: Iterative updating of model error for Bayesian inversion. Inverse Probl. 34(2), 025008 (2018)

    Article  MathSciNet  Google Scholar 

  7. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  Google Scholar 

  8. Dongarra, J., Moler, C., Bunch, J., Stewart, G.: LINPACK Users’ Guide. SIAM, Philadephia (1979)

    Book  Google Scholar 

  9. Ehrhardt, M.J., Markiewicz, P.J., Schönlieb, C.B.: Faster PET reconstruction with non-smooth priors by randomization and preconditioning. Phys. Med. Biol. 64(22), 225019 (2019)

    Article  Google Scholar 

  10. Fang, Y., Murugappan, S., Ramani, K.: Estimating view parameters from random projections for tomography using spherical MDS. BMC Med. Imaging 10(1), 12 (2010)

    Article  Google Scholar 

  11. Hansen, T.M., Cordua, K.S., Holm Jacobsen, B., Mosegaard, K.: Accounting for imperfect forward modeling in geophysical inverse problems—exemplified for crosshole tomography. Geophysics 79(3), H1–H21 (2014)

    Article  Google Scholar 

  12. Kaipio, J., Somersalo, E.: Statistical and Computational Inverse Problems. Springer, New York (2005)

    MATH  Google Scholar 

  13. Kaipio, J., Somersalo, E.: Statistical inverse problems: discretization, model reduction and inverse crimes. J. Comput. Appl. Math. 198(2), 493–504 (2007)

    Article  MathSciNet  Google Scholar 

  14. Kennedy, M.C., O’Hagan, A.: Bayesian calibration of computer models. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 63(3), 425–464 (2001)

    Article  MathSciNet  Google Scholar 

  15. Kolehmainen, V., Tarvainen, T., Arridge, S.R., Kaipio, J.P.: Marginalization of uninteresting distributed parameters in inverse problems—application to diffuse optical tomography. Int. J. Uncertain. Quantif. 1(1), 1–17 (2011)

    Article  MathSciNet  Google Scholar 

  16. Korolev, Y., Lellmann, J.: Image reconstruction with imperfect forward models and applications in deblurring. SIAM J. Imaging Sci. 11(1), 197–218 (2018)

    Article  MathSciNet  Google Scholar 

  17. Natterer, F.: The Mathematics of Computerized Tomography. Wiley, Chicago (1986)

    MATH  Google Scholar 

  18. Niebler, S., Schömer, E., Tjaden, H., Schwanecke, U., Schulze, R.: Projection-based improvement of 3D reconstructions from motion-impaired dental cone beam CT data. Med. Phys. 46(10), 4470–4480 (2019)

    Article  Google Scholar 

  19. Nissinen, A., Heikkinen, L.M., Kaipio, J.P.: The Bayesian approximation error approach for electrical impedance tomography—experimental results. Meas. Sci. Technol. 19(1), 015501 (2007)

    Article  Google Scholar 

  20. Nissinen, A., Kolehmainen, V., Kaipio, J.P.: Reconstruction of domain boundary and conductivity in electrical impedance tomography using the approximation error approach. Int. J. Uncertain. Quantif. 1(3), 203–222 (2011)

    Article  MathSciNet  Google Scholar 

  21. Madsen, R.B., Hansen, T.M.: Estimation and accounting for the modeling error in probabilistic linearized amplitude variation with offset inversion. Geophysics 83(2), N15–N30 (2018)

    Article  Google Scholar 

  22. Mallick, S.P., Agarwal, S., Kriegman, D.J., Belongie, S.J., Carragher, B., Potter, C.S.: Structure and view estimation for tomographic reconstruction: a Bayesian approach. In: Fitzgibbon, A., Taylor, C.J., Lecun, Y. (eds.) 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), 2(1):2253–2260 (2006)

  23. Peng, C.B., Rodi, W.L., Toksöz, M.N.: A Tikhonov regularization method for image reconstruction. In: Wei, Y., Gu, B. (eds.) Acoustical Imaging, vol. 20, pp. 153–164. Springer, Berlin (1993)

    Chapter  Google Scholar 

  24. Pulkkinen, A., Kolehmainen, V., Kaipio, J.P., Cox, B.T., Arridge, S.R., Tarvainen, T.: Approximate marginalization of unknown scattering in quantitative photoacoustic tomography. Inverse Probl. Imaging 8(3), 811–829 (2014)

    Article  MathSciNet  Google Scholar 

  25. Riis, N.A.B., Dong, Y.: A new iterative method for CT reconstruction with uncertain view angles. In: Lellmann, J., Burger, M., Modersitzki, J. (eds.) Scale Space and Variational Methods in Computer Vision. SSVM 2019. Lecture Notes in Computer Science, vol. 11603, pp. 156–167. Springer, Berlin (2019)

    Chapter  Google Scholar 

  26. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992)

    Article  MathSciNet  Google Scholar 

  27. Sidky, E.Y., Pan, X.: Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Phys. Med. Biol. 53(17), 4777–4807 (2008)

    Article  Google Scholar 

  28. Tick, J., Pulkkinen, A., Tarvainen, T.: Modelling of errors due to speed of sound variations in photoacoustic tomography using a Bayesian framework. Biomed. Phys. Eng. Express 6(1), 015003 (2019)

    Article  Google Scholar 

  29. Tikhonov, A.N.: Solution of incorrectly formulated problems and the regularization method. Soviet Math. Dokl. 4:1035–1038 (1963); English translation of Dokl. Akad. Nauk. SSSR 151:501–504 (1963)

  30. van Aarle, W., Palenstijn, W.J., Cant, J., Janssens, E., Bleichrodt, F., Dabravolski, A., Sijbers, J.: Fast and flexible X-ray tomography using the ASTRA toolbox. Opt. Express 24(22), 25129–25147 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Aku Seppänen for a helpful discussion regarding the block formulation of our variational method. We also thank Matthias Ehrhardt for a discussion on the implementation details of SPDHG for this problem. Finally, we thank the referees for comments and suggestions that helped to improve the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolai André Brogaard Riis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by a Villum Investigator Grant (No. 25893) from The Villum Foundation and by the National Natural Science Foundation of China via Grant 11701388.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riis, N.A.B., Dong, Y. & Hansen, P.C. Computed Tomography Reconstruction with Uncertain View Angles by Iteratively Updated Model Discrepancy. J Math Imaging Vis 63, 133–143 (2021). https://doi.org/10.1007/s10851-020-00972-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-020-00972-7

Keywords

Mathematics Subject Classification

Navigation