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Abstract Many mathematical imaging problems are

posed as non-convex optimization problems. When nu-

merically tractable global optimization procedures are

not available, one is often interested in testing ex post

facto whether or not a locally convergent algorithm has

found the globally optimal solution. When the prob-

lem is formulated in terms of maximizing the likelihood

function under a statistical model for the measurements,

one can construct a statistical test that a local maxi-

mum is in fact the global maximum. A one-sided test

is proposed for the case that the statistical model is a

member of the generalized location family of probability

distributions, a condition often satisfied in imaging and

other inverse problems. We propose a general method

for improving the accuracy of the test by reparameter-

izing the likelihood function to embed its domain into
a higher dimensional parameter space. We show that

the proposed global maximum testing method results

in improved accuracy and reduced computation for a

physically-motivated joint-inverse problem arising in

camera-blur estimation.
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1 Introduction

Mathematical imaging problems are often formulated as

non-convex energy minimization problems that impose
desirable properties on the global optima, e.g., corre-

sponding to a denoised, deblurred, or segmented image.

Much of the work of Mila Nikolova addressed the prob-

lem of local and global optima. As stated succinctly in

one of her early papers: “The resultant ... energy gen-

erally exhibits numerous local minima. Calculating its

local minimum, placed in the vicinity of the maximum

likelihood estimate, is inexpensive but inadequate” [27].

Study of local and global optima was a recurring theme

in her work, in which she addressed the nature of objec-

tive functions associated with non-convex probabilistic

models, i.e., maximum likelihood (ML) and maximum

a posteriori (MAP) [26], [30], [27], [29], [1], [28], as well

as non-linear least squares [11], [12]. Some of the op-

timization algorithms she introduced were only shown

to converge to one of several possible local optima. For

such algorithms, an important question is whether an

observed convergent limit is, in fact, the global maxi-

mum. Searching for and identifying the global maximum

is the problem that we address in this paper.

We consider this problem in the general setting of

maximum likelihood parameter estimation from multi-

ple samples from a probability distribution that belongs

to a parametric family. The conceptual simplicity and

tractability of the Maximum Likelihood (ML) princi-

ple, along with its theoretical optimality properties, has

made ML approaches prevalent in many fields. Yet,

questions surrounding its practical application remain

open. The pioneering statistician Sir Ronald Fisher [13]

was an early advocate of the ML approach and is gen-

erally credited with its development, although similar

concepts predate Fisher’s work. Stigler [38] provides a
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historical account of the theory’s maturation through-

out the nineteenth and twentieth centuries. Asymptotic

(large sample) characterization of local vs. global op-

tima of the likelihood function was established by Le

Cam (c.f. [20], ch. 6) using central limit theory, but

can be challenging to apply in practice. As the sample

size increases, it has long been known that, under mild

smoothness conditions, all statistically consistent sta-

tionary points of the likelihood function converge with

probability one to the global maximum [10,41]. The nat-

ural question then becomes: when there exist multiple
stationary points, and the number of samples is finite,

how can one identify the globally optimal one?

There exist general-purpose algorithms to address

this question, e.g., simulated annealing and genetic al-

gorithms. These algorithms, however, are rarely applied

to high-dimensional problems because of high computa-

tional demands [2,3,36]. Stationary points of the like-

lihood function can be readily found using iterative
root-finding methods such as Quasi-Newton gradient

descent [31]. Once a stationary point is found, it would

be useful to have access to a simple test to determine

if it is globally optimal without knowing the maximum

value of the likelihood function. Several such tests have

been proposed for this purpose [5],[6]. In this paper, the
focus is on testing local maxima of the likelihood func-

tion in the context of high dimensional inverse problems

arising in signal processing and imaging.

Specifically, this paper makes the following contri-

butions. Starting with the global maximum validation

function introduced by Biernacki [5], we demonstrate

that its mean is always less than or equal to zero when

the likelihood function belongs to a generalized loca-

tion family of distributions: distributions parameterized

by a shift in location. This property provides the im-

petus for constructing a one-sided variant of the test.

This generalized location family is relevant to many

linear and non-linear inverse problems. Furthermore,

we introduce a new approach of testing for the global

maximum by expanding the parameter space to a higher

dimension through a reparameterized embedding and

defining an augmented validation function for testing

local maxima. The augmented validation function can

better discriminate between local and global maxima

due to the expanded parameter space. We provide a com-

putational procedure for identifying useful candidate

embeddings that significantly improves the accuracy of

the test. Significant accuracy and computational advan-

tages are demonstrated for the application of camera

blur-function estimation [21]. In particular, when im-

plemented as a multiple restart stopping criterion, the

proposed global maximum testing procedure is shown

to significantly reduce computation as compared to sim-

ulated annealing methods for finding global maxima.

The remainder of the paper is organized as follows.

Section 2 describes the general global maximum testing

problem and introduces a simple illustrative example

used to demonstrate the key concepts. Section 3 intro-

duces the one-sided global maximum test as a variant of
the two-sided test of Biernacki [5], develops the reparam-

eterized embedding method, and proposes a numerical

spectral embedding procedure for identifying good em-

beddings. These concepts and procedures are illustrated

in the context of a simple non-linear maximum likelihood

estimation example. Section 4 illustrates the proposed

methods for application to camera blur-function estima-

tion.

2 Problem Description

2.1 Background

The problem setting is as follows. The observed data

comes in the form of a matrix d = [d1, . . . ,dn] ∈ Rm×n
where the columns are independent and identically dis-

tributed (i.i.d.) realizations of an m-dimensional ran-

dom vector D1 having a parametric Lebesgue density

f(d1;θ). The joint probability distribution f(d,θ) =∏n
k=1 f(dk,θ) of D = [D1, . . . ,Dn] is a known function

of d and θ, and is in a parametric family {f(d;θ) : d ∈ D,θ ∈ Θ}.
Here the vector of parameters θ is unknown, taking val-

ues in a parameter space Θ, an open subset of Rp, and

the matrix of measurements d takes values in a sam-

ple space D ⊂ Rm×n. For any mean square integrable

function X of D we define the statistical expectation
Eθ0

[X(D)] =
∫
X(d)f(d;θ0) dµ(d), where dµ(d) indi-

cates integration with respect to the Lebesgue measure

on Rm. The subscript θ0 of the expectation operator

Eθ0
is called the true value of θ as it parameterizes the

underlying density f(d;θ0) generating the observations.

As the columns of the measurement matrix d are

i.i.d. realizations, the log-likelihood function is

`(d;θ) =
1

n

n∑

k=1

ln f(dk;θ) (1)

The associated maximum likelihood estimator (MLE)

θ̂ : D → Θ is defined as the global maximum

θ̂Global = arg max
θ∈Θ

`(d;θ) . (2)

An estimator θ̂ is said to be consistent (statistically

consistent in norm) when limn→∞Eθ0
[‖θ̂ − θ0‖2]→ 0.

We will assume that f is continuously differentiable in

θ for all d, and define the score function as s(d,θ) =
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∇θ`(d,θ). The Fisher information matrix

I(θ0) = Eθ0
[s(D,θ0) s(D,θ0)

T
] is assumed to exist

and be invertible, and the notation “
P→”and “

D→” will

be used to describe convergence in probability and dis-

tribution respectively.

For the problem addressed in this paper, the global

maximum of the log-likelihood is unknown, and only a

local maximum θ̂ is available, which is not necessarily

equal to θ̂Global. For example, the local maximum could
be the limit of a convergent gradient descent algorithm.

Given θ̂, the local maximum testing problem is to decide

between the two hypotheses

H0 : θ̂ = θ̂Global vs. H1 : θ̂ 6= θ̂Global. (3)

A test between H0 and H1 is defined as a binary valued

function φ : D → {0, 1} that maps the data d to 0

or 1, indicating the decision H0 or H1, respectively.

The accuracy of a test is measured by its probability

of false alarm PFA=Eθ0 [φ|H0] and its probability of

detection PD=Eθ0
[φ|H1]. If for two tests φ1 and φ2

having identical PFA, PD of φ1 is greater than PD of

φ2, then φ1 is said to be more powerful than φ2.

Many approaches to the general hypothesis testing

problem (3) have been studied over the years. Blatt and

Hero [6] presented a historical context, which is summa-

rized here. The likelihood ratio test [44], Wald test [40],

and Rao score test [34] are asymptotically equivalent

tests as the number n of samples approaches infinity. The

likelihood ratio and Wald tests require the distribution

under H0 to be known, which for (3) requires knowledge
of the true parameter. On the other hand, the Rao score

test, later independently discovered and popularized

under the name Lagrange multiplier test [37], can be im-

plemented when the true parameter is unknown. Rao’s

test measures the Euclidean norm of the score function

weighted by the inverse Fisher information evaluated

at a local maximum ξR = 1
ps
(
d, θ̂

)T
I−1

(
θ̂
)
s
(
d, θ̂

)
.

Gan and Jiang [14] propose a similar test for consis-

tency of a stationary point of the log-likelihood based

on White’s information test [43]. White’s original work

was concerned with testing for model misspecification

under the assumption that the global maximum of the

likelihood function had been located, and Gan uses the

same test statistic but in the converse situation.

The Rao test may be used to test for consistency of

a local maximum of the log-likelihood function. Unfor-

tunately, Monte Carlo experiments indicate that this

test may not be very powerful even in the univariate

setting [14,5]. In [5] an improved test was proposed for

testing consistency of a stationary point following ideas

presented by Cox [8,9]. This test, called the Biernacki

test, uses a bootstrap estimate to directly compare the

observed value of the locally maximized log-likelihood to

its statistical expectation. Both the Rao score and the

Biernacki tests fall under the more general M-testing

framework described by Blatt and Hero [6], where addi-

tional types of tests of local maxima are proposed.

2.2 Motivating Example

To illustrate the difficulties in testing local maxima of

the log-likelihood consider the following one dimensional

statistical estimation problem. Let x ∈ [0, T ] be a time

interval and xi = iT/N , i = 0, . . . , N − 1. The mea-

surements {d(xi)}Ni=1 are a set of time samples of a

sinusoidal signal in additive Gaussian noise

d(x) = sin(θ0x) + ε(x), x ∈ [0, T ]. (4)

Here θ0 ≥ 0 is an unknown sinusoidal frequency param-

eter to be estimated. More generally, it will be more

convenient to express the measurement model in vector
form d = [d(x0), . . . , d(xN−1)]T

d = µ(θ0) + ε, ε ∼ N
(
0, σ2IN×N

)
, (5)

where µ(θ0) = sin(θ0x) is the mean of d, a vector of time

samples of the noiseless signal, and ε is an independent

identically distributed (i.i.d.) zero mean N -dimenstional

Gaussian noise with identity covariance matrix scaled

by the variance parameter σ2, which is assumed known.

The maximum likelihood estimator θ̂ of the frequency

parameter is then the globally optimal solution

θ̂Global
def
= arg min

θ≥0
‖µ(θ)− d‖2 . (6)

For the sinusoidal signal in noise model (4), there will be

local maxima of the log-likelihood function correspond-

ing to the multiple stationary points of ‖µ(θ)− d‖2 over

θ. Figure 1(a) shows two of these local maxima for the

case that the noise variance σ2 is zero. The solid curve

in Figure 1(a) corresponds to the true signal µ(θ), where

θ = θ0 is the global maximum, and the dashed curve

corresponds to another signal for which θ is a local (non-

global) maximum. Also shown is noisy data d generated

with each of these two signals, corresponding to blue

circles and red crosses, respectively, where the Gaussian

noise variance is σ2 = 1. The difficulty in perceiving

differences between these two noisy signals suggests

that distinguishing a sub-optimal local maximum from

the global maximum will be challenging. This becomes

even more difficult for higher dimensional estimation

problems occurring in imaging (c.f. [21] Section 3c).
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Fig. 1: Realizations from a sinusoidal signal in

Gaussian noise model for two values θ0 and θ̂ of the

sinusoidal frequency parameter θ corresponding to a

global maximum θ0 and a local minimum θ̂,

respectively, of the log-likelihood −`(d; θ) (6) with

σ2 = 1. (a) Signal realizations (blue and red symbols)

and the mean signal (blue and red curves) from the

model when θ = θ0 and θ = θ̂, respectively. (b) The

negative log-likelihood plotted as a function of θ for the

case σ2 = 0.

3 Tests for Local Optima

In the hypothesis testing problem described by (3), the

null-hypothesis H0 is that the discovered local maxi-

mum θ̂ of the log-likelihood is a global maximum. It

is important to note that a failure to reject the null
hypothesis is not a positive statement about the global

optimality of θ̂. Instead, when a test accepts H0, all

that can be said is that it does not rule out the point

as a local maximum with sufficient statistical certainty.

3.1 A Two-Sided Test

To test whether a local maximum of the likelihood

function is, in fact, the global maximum one defines

a suitable global maximum validation function whose

statistical distribution changes depending on whether

the local maximum θ̂ is global or not [6]. Define the

validation function

ϕ
(
d, θ̂

)
def
= `
(
d; θ̂

)
−m(θ̂, θ̂), (7)

where m : Rp × Rp → R is the mean function

m(θ0,θ1) = Eθ0
[`(D;θ1)] , (8)

This function is called the ambiguity function and is the

statistical expectation under the distribution f(d;θ0) of

the log-likelihood function `(D,θ) evaluated at θ = θ1.

Assuming that the global maximum θ̂Global is near the

true value θ0, under the null hypothesis H0 we have

θ̂ = θ̂Global, and the distribution of ϕ
(
D, θ̂

)
will have

approximately zero mean. On the other hand, under the

alternative hypothesis H1 that θ̂ is a non-global local

maximum the mean of the distribution of ϕ
(
D, θ̂

)
will

shift away from zero. This is the key motivation for

using the validation function (7) to test for a global

maximum.

For an i.i.d. data sample D1, . . . ,Dn the following

asymptotic result was established in [5, Theorem 2].

Under H0:

1√
n

n∑

k=1

ϕ
(
Dk, θ̂

)
D→ N (0,Varθ0

[`(D1,θ0)]) , (9)

where Var[`(D1,θ0)] is the variance of the log-likelihood

function for a single data sample (n = 1). Recalling the

definition of the random data matrixD = {D1, . . . ,Dn},
this Gaussian limit motivates us to define the following

test of the hypotheses H0 : θ̂ = θ̂Global vs. H1 : θ̂ 6=
θ̂Global
(
`
(
D; θ̂

)
−m(θ̂, θ̂)

)2

v(θ̂)

H1

>
<
H0

η, (10)

where the function v : Rp → R is the variance v(θ) =

Varθ[`(D;θ)] under the distribution f(d,θ) of the log-

likelihood evaluated at θ, and η is a threshold selected to

fix the false alarm probability equal to a suitably small

number α ∈ [0, 1]. Under local asymptotically normal

(LAN) conditions on the likelihood function [22] θ̂
P→ θ0

(a.s.) and the test statistic on the left hand side of (10)

has an approximately chi-square distribution under H0.

Hence η can be selected as the 1−α quantile of the chi-

square distribution. In [5] this test was implemented by

approximating the mean Eθ0 [`(D;θ0)] and the variance

Var[`(D;θ0)] using a parametric bootstrap estimator.

The test (10) is called a two-sided test because the

condition for which the null hypothesis is accepted can

be equivalently be expressed as

−
√
ηv(θ̂) ≤ ϕ

(
D, θ̂

)
≤
√
ηv(θ̂).
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This is thus a test for which, as compared to the global

maximum θ̂Global, a sub-optimal local maximum θ̂ will

cause the test function to undergo a shift in mean, where

the shift could either be in a positive or a negative

direction.

3.2 A One-Sided Test

If it were known a priori that a sub-optimal local maxi-

mum causes a negative shift in the mean of the global

maximum validation function ϕ
(
D, θ̂

)
, a one-sided test

would be advantageous over a two-sided test. More

specifically, a one-sided test would be expected to have

higher power than the two-sided test (10) when for all

θ̂ 6= θ0,

m(θ̂, θ̂) ≥ m(θ0, θ̂), (11)

where m(θ0,θ1) is the ambiguity function defined in (8).

When this condition is satisfied the two-sided test (10)

can be replaced by the one-sided test

`
(
D; θ̂

)
−m(θ̂, θ̂)

√
v(θ̂)

H0

>
<
H1

η1. (12)

The condition (11) is satisfied for many imaging

and inverse problems. For example, consider the case

where θ is a clean image that one wishes to recover

from samples of D, the output of an imaging sensor

with known point spread function (forward operator)
in additive correlated noise. When the point-spread
function (PSF) and the covariance are known, we will

show that this model always satisfies the inequality (11),

and the one-sided test might be expected to lead to a

better test for a global maximum. Define θ0 ∈ Rp as the

vectorized true image to be recovered and D ∈ Rq as

the random vectorized image acquired from the camera,

which obeys the model:

D = Hθ0 + ε s.t. ε ∼ N (0,Σ) , (13)

where H is a q × p matrix representing the forward

operator and Σ is the q × q camera noise covariance

matrix.

To show that (11) holds in this case, start with the

log-likelihood function for the above model

`(D;θ) =− 1

2
(H (θ0 − θ) + ε)

T
Σ−1 (H (θ0 − θ) + ε)

− 1

2
ln(detΣ)− q

2
ln(2π) . (14)

For any value of θ, (14) is a quadratic form in ε that is

distributed non-central chi-squared with non-centrality

parameter

λ = (θ0 − θ)
T
HTΣ−1H (θ0 − θ) . (15)

The moment properties of the non-central chi-squared

distribution [18] thus specify the statistical expectation

of the log-likelihood function (14) :

Eθ0
[`(D;θ)] = −1

2
(q + λ)− 1

2
ln(detΣ)− q

2
ln(2π) .

(16)

The difference Eθ[`(D;θ)]− Eθ0
[`(D;θ)] = m(θ,θ)−

m(θ0,θ) = λ/2, is non-negative, establishing that (11)

holds as claimed. For this example, the unconstrained

maximum likelihood estimator of θ is a solution to a

convex optimization problem, which is strictly convex

when H is full column-rank, and thus there will be no

sub-optimal isolated local maxima of (2). As our simple
example in Figure 1 illustrated, additional constraints

can give rise to local maxima.

The condition (11) is satisfied for a more general class

of camera models where the probability distribution of

the data is in the generalized location family.

Definition 1 Let f(d;θ) be a distribution defined on

d ∈ Rm parameterized by θ ∈ Θ ⊂ Rp. The distribution

belongs to the generalized location family of distribu-

tions if there exists a function g : Rp → Rm such that

f(d;θ) = f(d− g(θ)) for all θ ∈ Θ and all x ∈ Rm.

Any camera model of the form Dk = µ(θ0) + εk,
k = 1, . . . , n where µ(·) is a possibly non-linear function

and εk is i.i.d. but possibly non-Gaussian noise, will

have a distribution that is in the generalized location

family.

Theorem 1 Let D1, . . . ,Dn be an i.i.d. sample and

assume that D1 has distribution f(d1;θ) belonging to

a generalized location family. Then the inequality (11)

holds.

Proof The proof of the Theorem proceeds in two parts.

The first part establishes that, for any parameters θ and

θ0, the ambiguity function (8) satisfies: m(θ0,θ0) ≥
m(θ0,θ) (Claim 1). The second part establishes that,

for f(d;θ) in a generalized location family, m(θ0,θ0) =

m(θ,θ) (Claim 2). Putting these two parts together

implies

m(θ,θ) ≥ m(θ0,θ).

The theorem then follows upon specialization of this

inequality to θ = θ̂.
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We recall the integral form for the mean function

m(θ0,θ) =Eθ0
[log f(D;θ)]

=

∫
f(d;θ0) log f(d;θ) dµ(d), (17)

and the identity Eθ0 [log f(D;θ)] = nEθ0 [log f(D1;θ)],

which follows from the i.i.d. assumption.

Claim 1 in this proof follows from the non-negativity

property of the Kullback-Liebler (KL) divergence, a well

known result in statistics and information theory [19].

For completeness, we give a self contained proof. Start

with the expression:

m(θ0,θ0)−m(θ0,θ) = −
∫
f(d;θ0) log

f(d;θ)

f(d;θ0)
dµ(d)

(18)

Now, using the elementary inequality log(u) ≤ u − 1

and the fact that
∫
f(d, θ̃)dµ(d) = 1 for all θ̃, the right

hand side of (18) is non-negative. Therefore, using the

definition (17), this establishes the claim

Eθ0
[log f(D;θ0)] ≥ Eθ0

[log f(D;θ)]. (19)

Claim 2 of this proof is a direct result of f(dk;θ)

being in the generalized location family. Specifically,

m(θ0,θ0) =

∫
f(d;θ0) log f(d;θ0) dµ(d)

=n

∫
f(d1 − g(θ0)) log f(d1 − g(θ0)) dµ(d1)

=n

∫
f
(
d̃1 − g(θ)

)
log f

(
d̃1 − g(θ)

)
dµ(d̃1)

=m(θ,θ)

where the second equality comes from the generalized

location family definition and the third equality follows

from making the change of variable of integration d̃1 =

d1 + (g(θ0)− g(θ)). This establishes the Theorem. ut

3.3 Reparameterized Embeddings

The detection performance of the one-sided and two-

sided tests for the global maximum depends on how

much shift a local maximum θ̂ ∈ Θ causes in the dis-

tribution of the associated validation function (7) in-

troduced in Sec. 3.1. In this section, we explain how

embedding the parameters into a higher dimensional

parameter space and a modified validation function can

increase this shift, leading to improved detection perfor-

mance.

The proposed approach can be viewed as analogous

to the advantageous use of higher dimensional embed-

dings in other mathematical problems. For example, in

mathematical imaging, the level-set method for image

segmentation [33,35] embeds a two-dimensional curve

in the plane as a level set of a higher-dimensional pa-

rameterized surface. As another example, parameter

expansion is applied to stabilize numerical solutions to

non-linear differential equations [42]. A similar approach

is used in computational statistics for accelerating the

convergence of parameter estimates in the iterative pa-

rameter expansion expectation-maximization (PX-EM)

algorithm [23]. Furthermore, in machine learning, the

support vector machine (SVM) [39] improves classifica-
tion performance by representing the decision region in

the native lower dimensions as a separating hyperplane

in a much higher dimensional space. In analogy to the

above examples, the reparameterization embedding we

propose will lead to significant improvements in testing

for the global optimum.

We define the reparameterized embedding as follows.

As above let the log-likelihood function `(θ) be parame-

terized by a native parameter θ ∈ Θ. Let θ′ ∈ Θ′ be a

fictitious parameter and define the expanded parameter-

ization θ̃ = (θ,θ′) living in Θ̃ = Θ×Θ′. The native pa-

rameter θ is thus embedded in the cylinder set {θ}×Θ′
of the higher dimensional space Θ̃. Associated with this

embedding, define the augmented log-likelihood function
˜̀(d; θ̃) parameterized by θ̃ ∈ Θ̃. We can link the embed-

ded parameterization θ̃ = (θ,θ′) ∈ Θ̃ = Θ ×Θ′ to the

native parameterization θ ∈ Θ by fixing θ′, which we

can assume is equal to 0 without loss of generality. Thus

the native parameterization is equal to a cross-section of

the embedded parameterization
{
θ̃ = (θ,0) : θ ∈ Θ

}

which gives the relation between the native and aug-

mented log-likelihood functions: `(d;θ) = ˜̀(d;θ,0).

Define the difference between the augmented log-

likelihood function and the native log-likelihood func-

tion:

g̃(d;θ, θ̃) = ˜̀(d; θ̃)− `(d;θ), θ ∈ Θ, θ̃ ∈ Θ ×Θ′.
(20)

We first introduce a prototype for a new class of

global maximum validation functions introduced in this

section. This prototype, called the max gap function, is
defined as the maximum of g̃ with respect to θ̃ over the

restricted embedding space {θ} ×Θ′

G(d,θ) = max
θ̃∈{θ}×Θ′

g̃
(
d;θ, θ̃

)
. (21)

When θ = θ̂ is a non-global maximum of the native

log-likelihood function `(d;θ), G(d, θ̂) measures the gap

between the augmented log-likelihood ˜̀(d; (θ̂,θ′)) max-

imized over θ′ ∈ Θ′ and `(d;θ) evaluated at θ = θ̂. We

would like to design the reparameterized embedding to
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maximize this gap. A mean gap function would provide

a criterion for doing this.

For native parameters θ0,θ ∈ Θ define the max

mean gap function of θ ∈ Θ

mG(θ0,θ) = max
θ′∈Θ′

Eθ0 [g̃(D;θ, (θ,θ′))]. (22)

The mean of the max gap function is lower bounded by

the max mean gap function.

Theorem 2 For any θ0 and θ in Θ the max gap func-

tion (21) and the max mean gap function (22) are non-

negative. Furthermore, Eθ0
[G(D;θ)] ≥ mG(θ0,θ) and

mG(θ0,θ0) = 0.

Proof: Non-negativity of G(d;θ) follows from the rela-

tion maxθ′∈Θ′ g̃(d;θ, (θ,θ′)) ≥ g̃(d;θ, (θ,0)), which is

equal to zero since ˜̀(d; (θ,0)) = `(d;θ). An identical

argument establishes non-negativity of mG(θ0,θ). The

stated inequality follows from the fact that, for any ran-

dom variable Y (u) depending on a non-random param-
eter u, maxuE[Y (u)] is no greater than E[maxu Y (u)].

The proof that mG(θ0,θ0) = 0 uses an argument

similar to what we used to establish Claim 1 in the

proof of Theorem 1. As Eθ0
[`(D;θ0)] = m(θ0,θ0),

mG(θ0,θ0) = maxθ′∈Θ′ Eθ0
[˜̀(D; (θ0,θ

′)]−m(θ0,θ0).

Eθ0 [˜̀(D; (θ0,θ
′))] is of the form

∫
f0(d;θ0) log f1(d;θ0,θ

′)dµ(d),

where the densities f0 and f1 satisfy f1(d;θ0,0) =

f0(d,θ0). Therefore, invoking the non-negativity of the

KL divergence, which led to inequality (19) in the proof

of Theorem 1, the integral above takes its maximum

over θ′ ∈ Θ′ when θ′ = 0 and by definition (8) this

value is equal to m(θ0,θ0). ut
If the prototype validation function G(d; θ̂) defined

in (21) were to be used to test a local maximum θ̂,

Theorem 2 suggests that the function mG(θ0,θ) defined

in (22) can be used to design reparameterized embed-

dings that induce the largest possible positive shifts

in G(θ0,θ) when θ deviates from the true parameter

θ0, which would be expected to occur if θ = θ̂ were a

non-global maximum of `(d;θ). We describe a spectral

embedding procedure below that implements such a

design strategy.

While the prototype validation function G in (21)

has the benefits of simplicity and the analytical lower

bound in Thm 2, it has two deficiencies that motivate

an alternative gap function, called g and defined in (23)

below. First, the maximization in G is restricted to the

sub-space of embedded parameter values θ̃ = (θ,θ′) ∈
Θ̃ over which θ = θ̂ is fixed. This restriction deprives

the prototype of extra degrees of freedom, potentially

reducing its sensitivity to non-global maxima. Second,

the evaluation of G requires a global maximization over

θ′ ∈ Θ′, which may be challenging in practice.

We next introduce an alternative gap function that

overcomes these deficiencies: it expands the maximiza-

tion in (21) to the full embedding space Θ̃ = Θ ×Θ′
but allows the global maximum to be replaced by a local

maximum found by an iterative algorithm initialized at

θ̃ = (θ̂,0).

Definition 2 Given a point θ ∈ Θ and an iterative

algorithm for finding local maxima of a function f(θ̃),

θ̃ ∈ Θ̃ = Θ ×Θ′, the basin of attraction Sf (θ) ⊆ Θ̃ is

defined as an open set containing the point θ̃ = (θ,0)

such that the algorithm converges to a local maximum

of f(θ̃) when initialized at that point.

Let θ̂ ∈ Θ be a local maximum of the native log-

likelihood function `(d;θ) and let
̂̃
θ ∈ S˜̀

(
θ̂
)
⊆ Θ̃ be a

local maximum of the augmented log-likelihood function
˜̀(d; θ̃) in a basin of attraction containing θ̃ = (θ̂,0).

As an alternative gap function to (21) we define the

augmented validation function

g(d, θ̂) = max
θ̃∈S˜̀(θ̂)

g̃
(
d; θ̂, θ̃

)
. (23)

This measures the gap between the value of the native

log-likelihood function evaluated at θ̂ and the maxi-

mum of the augmented log-likelihood function in the

neighborhood of (θ̂,0).

As an analog to (22), for native parameters θ0,θ ∈
Θ, define the locally maximized mean of this gap func-

tion, called the augmented ambiguity function

mg(θ0,θ) = max
θ̃∈Sµ(θ)

Eθ0
[g̃(D;θ, θ̃)], (24)

where for a point θ ∈ Θ, Sµ(θ) denotes a basin of

attraction of the mean function µ(θ̃) = Eθ0
[˜̀(D; θ̃)]

containing the point θ̃ = (θ,0).

Theorem 3 For any θ0 and θ in Θ

0 ≤ mg(θ0,θ) ≤ Eθ0

[
max
θ̃∈Sµ(θ)

g̃
(
D;θ, θ̃

)]
. (25)

The leftmost inequality is achieved with equality when

θ = θ0.

Proof: The proof is similar to the proof of Theorem 2 and

relies on the fact that (θ,0) ∈ Sµ(θ), by definition of

the bassin of attraction Sµ(θ). In particular, this implies

that mg(θ0,θ) ≥ Eθ0 [˜̀(D; (θ,0))− `(D;θ)] = 0, estab-

lishing the leftmost inequality in (25). The condition for

equality in the leftmost inequality follows from the fact

that Eθ0 [˜̀(D; θ̃)] ≤ m(θ0,θ0), achieving equality when

θ̃ = (θ0,0). The rightmost inequality in (25) follows
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from the same property of expectation of maximized

random variables as used in the proof of Theorem 2. ut
Under the condition that the basins of attraction

S˜̀(θ̂) and Sµ(θ̂) are equal, Theorem 3 would give the

lower bound mg(θ0, θ̂) on the mean shift in g(d, θ̂). If

the augmented log-likelihood is smooth and the data

D = {D1, . . . ,DN} consists of i.i.d. samples, one can

expect this condition to be satisfied asymptotically in

N since by the law of large numbers ˜̀(D, θ̃) converges
almost surely to its mean Eθ0 [˜̀(D, θ̃)]. Under such con-

ditions, similarly to Theorem 2 for the gap function G

(21), Theorem 3 can be used to justify the use of the

mean function mg to explore candidate reparameterized

embeddings using the augmented validation function g

(23).

In analogy to (12), for gap functions G or g, we

propose a one sided reparameterized embedding test

of H0 : θ̂ = θ̂Global vs. H1 : θ̂ 6= θ̂Global. For the

augmented validation function g the proposed test is of

the form:

g
(
d, θ̂

)
−mg

(
θ̂, θ̂

)

√
vg

(
θ̂
)

H1

>
<
H0

τ, (26)

and similarly for the max gap function G. As above, for

θ0,θ1 ∈ Θ, mg(θ0,θ1) = Eθ0 [g(D,θ1)] and we have

defined the variance vg(θ0) = Varθ0
[g(D,θ0)].

In the following sections we show examples of how a

well chosen reparameterized embedding space can result

in significant improvement of global maximum testing.

Given a statistical model and a candidate embedding

θ̃ ∈ Θ̃. Below we specify a computational procedure for

selecting a reparameterized embedding space Θ̃. The
procedure is inspired by Rao’s locally optimal test [7,34]

of the hypotheses H0 : θ = θ0 vs. H1 : θ = θ0+δ, where

δ is a small local perturbation of magnitude ‖δ‖ = α.

Rao’s score test solves a generalized eigenvalue problem

of the form max‖u∈Θ‖
∣∣uTs(d,θ0)

∣∣2/uT I(θ0)u, where

s(d,θ) = ∇θ`(d;θ) is the score function and I(θ) =

−Eθ[∇2
θ`(d,θ)] is the Fisher information matrix. The

solution of the generalized eigenvalue problem gives the

optimal direction vector u = I−1/2(θ0)s(d,θ0) specify-

ing the locally optimal perturbation as δ = αu.

Spectral embedding procedure: Motivated by The-

orems 2 and 3 and Rao’s test, we propose a heuristic

procedure to improve on a randomly initialized embed-

ding space using a singular value decomposition (SVD)

on a set of Rao locally optimal direction vectors that

are computed offline. The effectiveness of this procedure

is demonstrated in the numerical results sections below.

First, an ε-net of sampled parameters θ
(i)
0 , i =

1, . . . , p, is constructed on Θ. For each θ
(i)
0 the non-

global local maxima

{
θ̂
(i,j)
}p,qi

i,j=1

ofm(θ
(i)
0 ,θ) are found.

The likelihood function is reparameterized into an initial

Θ̃ space of higher dimensional and the meanm(θ
(i)
0 , θ̃) =

E
θ
(i)
0

[˜̀(D; θ̃)] of the augmented log-likelihood function

is computed. Let θ̃
(i,j) ∈ Θ×Θ′

be the point in the ini-

tial space associated with θ̂
(i,j)

for each i = 1, . . . , p, j =

1, . . . , qi. Then the solutions
{
u(θ̃

(i,j)
)
}
i,j

of the gener-

alized eigenvalue problem are arranged as the columns

of a matrix G, whose left principal singular-vector r is

taken as a basis for the final spectral embedding sub-

space in Θ′. If more than one additional embedding

dimension is desired, this procedure can be repeated

with previously identified embedded subspaces succes-

sively removed.

3.4 Example: Sinusoidal frequency estimation

We return to the sinusoid in additive Gaussian noise

example presented in Section 2.2 to illustrate the theory

presented in the previous section and to demonstrate

the advantages of the proposed one-sided version of the

Biernacki test (12) and the one-sided reparameterized

embedding test (26).

We embed the one dimensional frequency parameter

θ0 ∈ R into the expanded parameter θ̃ = (θ0, θ1, . . . , θk) ∈
Rk+1 and link θ̃ to the augmented log-likelihood through
the augmented mean function µ̃ ∈ RN

µ̃
(
θ̃
)

= sin
(
θ0x+ θ1x

2 + ...+ θkx
k+1
)
. (27)

This reparameterization embedding introduces variation

into the instantaneous frequency of the sinusoid, which

enhances the gap between the native and augmented

log-likelihood functions at the local maxima, leading

to improved detection performance using the test (26).

With this embedding, the max gap function G defined

in (21) takes the form

G(d; θ̂) = (28)

=
1

2σ2

n∑

i=1

(
‖µ(θ̂)− d‖2 − min

θ1,...,θk
‖µ̃(θ̂, θ1, . . . , θk)− d‖2

)
.

The max mean gap function mG(θ0, θ̂) (22), which, by

Theorem 2, lower bounds the mean shift in G(d; θ̂), has

the representation:

mG(θ0, θ̂) =
n

σ2

(
F (θ0, θ̂)− cos((θ0 − θ̂)x)

)
,
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where, for large N ,

F (θ0, θ̂) =

max
θ1,...,θk

T∫

0

sin(θ0x)sin(θ̂x+ θ1x
2 + . . .+ θkx

k+1)dx

is the maximum of a Fresnel integral. The forms g and

mg for the augmented validation function (23) and the

ambiguity function (24) are similar except that the

minimizations include θ0 and a local minimization is

performed.

To simplify the discussion we will respectively repa-

rameterize the augmented and native log-likelihood func-

tions by the associated mean functions: µ̃(θ̃), defined

in (27), and µ(θ) = µ̃(θ,0), which lie in different sub-

spaces of RN . With this reparameterization the native

log-likelihood `(d; θ) becomes `(d;µ), with µ = sin(θx)

lying in a one dimensional subspace while the augmented

log-likelihood ˜̀(d; θ̃) becomes ˜̀(d; µ̃), with µ̃ lying in a

higher dimensional subspace. In particular, the spectral

embedding procedure, described at the end of the previ-

ous subsection, yields a mean vector µ̃ lying in the two di-
mensional subspace {µ̃ : µ̃ = sin(θ0x) + θ1r, θ0, θ1 ∈ R},
where r is the left principal singular vector of a N ×
(
∑p
i=1 qi). The obtained vector r is shown in Figure 2

for the case that the number of time samples is N = 100,

the measurement time interval is T = 1, the Gaussian

noise variance is σ2 = 1 and the local maxima search
region θ ∈ [0, 4π]. This particular reparameterized em-

bedding vector r defines the embedded space used in

all simulations described in this subsection.

0 0.2 0.4 0.6 0.8 1
x

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

r

Fig. 2: The principal left singular vector r computed

by implementing the spectral procedure for learning

embeddings, described at the end of Sec. 3.3, for the

sinusoid in Gaussian noise example. The learned repa-

rameterized embedding is the two dimensional subspace{
µ̃ ∈ RN : µ̃ = sin(θ0x) + θ1r, θ0, θ1 ∈ R

}
.

Figure 3 gives a graphical depiction of the proposed

reparameterized embedding method in the context of

this example. The left panel of the figure represents

the case where the hypothesis H0 : θ̂ = θGlobal is re-

jected, while in the right panel H0 is not rejected. The

figure shows the likelihood trajectories in the native

parameterization µ(θ) as a green curve labeled U . The

corresponding likelihood surface in the embedded pa-

rameterization µ̃(θ̃) is shown as the disk labeled Ũ .

The left and right panels in Figure 3 each show

two local maxima, a local maximum proximal to the

true parameter θ0, denoted θ̂0, and a local maximum

distant from the true parameter, denoted θ̂. Associ-

ated with these local maxima are the expanded parame-

ters θ̃0 and
̂̃
θ, respectively, that are depicted in basins

of attraction S
(
θ̂
)

of the augmented log-likelihood

maxθ̃
˜̀
(
d,µ

(
θ̂, θ̃
))

. On the right panel the proximal

local maximum θ̂0 is close to the true parameter θ0 so

that the means µ
(
θ̂0

)
and µ̃

(̂̃
θ0

)
are close to each other.

By contrast, on the left panel these two means are not

close to each other when the local maximum θ̂ is distant

from θ0. The reparameterized embedding enhances this
contrast by increasing the gap between the augmented

log-likelihood and the native log-likelihood.

µ
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µ̃
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µ
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Fig. 3: (a) Reparameterized embedding depicted for the

case where the augmented validation function g (23) is

used for testing for a global maximum. When initialized

at θ̃ =
(
θ̂,0

)
an iterative algorithm converges to a local

maximum
̂̃
θ in the basin of attraction S

(
θ̂
)

of θ̂. The

large gap g
(
d, θ̂

)
= `
(
d, µ̃

(̂̃
θ
))
− `
(
d,µ

(
θ̂
))

causes

a rejection of the null-hypothesis H0 : θ̂ = θ̂0. (b) A

maximum θ̂0 in the neighborhood of the true solution

θ0 leads to a smaller gap in g, and the null-hypothesis

is accepted.
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Figure 4 shows the surface corresponding to the (neg-

ative) mean augmented log-likelihood,
{
−Eθ0 [`(d;µ(θ̃))]

}
θ̃∈Θ̃

as a surface over θ̃ = (θ, θ
′
) along with its cross-section

(blue curve) along the line {(θ, 0) : θ ∈ Θ}, which is

the (negative) native mean log-likelihood trajectory

{−Eθ0 [`(d,µ(θ))]}θ∈Θ. The mean augmented log-likelihood

has two local maxima, a global maximum
̂̃
θ0 = (θ̂0, θ̂

′
0)

near (θ0, 0) and a local maximum
̂̃
θ = (θ̂, θ̂′). The green

curve traces out −maxθ′∈Θ′ Eθ0 [`(d, µ̃(θ, θ′))] and the

gap between the blue and green curves is the augmented

ambiguity function mg(θ0, θ) (24).
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Fig. 4: The (negative) mean of the augmented log-

likelihood surface associated with the sinusoid in addi-
tive Gaussian noise example given by (5) with reparam-

eterized two dimensional embedding constructed from

the principal singular vector r shown in Fig. 2. The gap

between the blue and green curves is the augmented

ambiguity function mg(θ0, θ) (24).

Figure 5 demonstrates the improvements achieved

using the proposed reparameterized embedding test (26)

with respect to testing accuracy, as quantified by receiver

operating characteristic (ROC) curves. The ROC curve

sweeps out the probability of detection (PD) against the

probability of false alarm (PFA) achieved by a test that

a local maximum is the global maximum. Tests with

higher ROC curves are more accurate. 10,000 simula-

tions were performed with the following parameters: a

true sinusoidal frequency θ0 = 3π and, N = 100, T = 1,

σ2 = 1, and search region θ ∈ [0, 4π]. In order of increas-

ing accuracy these tests are: the two-sided Biernacki

test [5], the one-sided version of the Biernacki test (12),

equivalent to the proposed test with k = 0, followed by

the proposed one-sided with the embedding given by

(27) for k = 1 and k = 3 respectively. Using k = 3 or

the one-sided test based on a single embedding basis

10-2 10-1 100

log
10

 PFA

0

0.2

0.4

0.6

0.8

1

P
D

Global Maximum Detection Performance

Proposed k=3
Proposed k=1 (spectral)
Proposed k=1
Proposed one-sided
Biernacki [4]

Fig. 5: Empirically estimated receiver operating char-

acteristic (ROC) curve of probability of detection (PD)

versus probability of false alarm (PFA) of the proposed

one-sided test (12) and the proposed reparameterized
embedding test (26) with two and four embedding di-

mensions (k = 1 and k = 3) as compared to Biernacki

two sided test (Biernacki [4]) for frequency estimation of
a sinusoid in additive Gaussian noise. The curve labeled

“Proposed k = 1 (spectral)” corresponds to the test (26)

implemented with the two dimensional spectral embed-

ding procedure using the principal direction vector r

shown in Figure 2.

chosen according to the proposed spectral approach,
achieves significantly better performance than Biernacki

tests. For all of the reparameterized embedding tests

the maximization in the augmented validation function

(28) was computed numerically using a limited-memory

quasi-Newton solver [31].

4 Application to Wavefront Sensing

We apply the proposed global maximum testing frame-

work to the problem of jointly estimating camera blur

and pose from a known calibration target in the presence

of aliasing, studied in [21]. Wavefront phase-aberrations

characterize the camera’s point spread function (PSF)

through deviations of an otherwise ideal optical system,

and a Zernike polynomial basis [45] is used to parame-

terize these phase aberrations resulting in a parametric

blur model. The solution to the inverse problem is the

global maximum of a highly nonconvex log-likelihood

function, that admits many local maxima [4,17,15,25].

The inverse problem is typically solved using iterative

optimization algorithms that converge to local maxima.

Thus, in this context, a test for global maximum is a

test of global convergence of the iterative algorithm. We
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demonstrate how the proposed test of global convergence

can be used to reduce the computation burden.

The spectral embedding procedure described in Sec-

tion 3.3 is used in conjunction with the one-sided test

(26) to substantially improve the detectability of conver-

gence of the estimated blur to a suboptimal maximum

of the log-likelihood function. Under the generalized

imaging model [16], the PSF h is described in terms of

a non-negative aperture function A and a real-valued

phase function Ψ , expressed as a linear combination

of Zernike polynomials, where the parameter vector θ
contain the basis coordinates. Specifically, h is given as

h(x, y;θ) = c0|g(wx, wy;θ)|2

g(wx, wy;θ) = F−1{A(wx, wy) exp [Ψ(wx, wy;θ)]} ,

where c0 is a normalizing constant that ensures the PSF

integrates to 1, g(wx, wy;θ) is the coherent transfer

function (CTF), and F−1 is the inverse Fourier trans-

form. A test for global convergence is constructed using

the proposed spectral method to embed this paramet-

ric blur model into the space of non-negative PSFs on

a Nyquist-sampled grid. Monte Carlo simulations per-

formed at a moderate signal-to-noise ratio (20 dB) and

blur strength (0.025 waves RMS) demonstrate the sub-

stantial power of the proposed test. Over 100 such trials,

a limited-memory quasi-Newton search started from

the point representing no phase aberrations (an ideal

imaging system) led to non-global local maxima 96% of

the time. Table 1 compares the power of the Biernacki’s

test [5] with the proposed approach when both tests

are operated at a false alarm rate of 0.01. The observed

improvement is consistent with the simulation example

described in Section 3.4.

Test PFA PD
Biernacki [5] 0.01 0.22
Proposed (26) 0.01 1.0

Table 1: Empirical performance of global convergence

tests for an iterative quasi-Newton maximum likelihood

estimator of the camera point spread function (100

Monte-Carlo trials). The probability of detection (PD)

achieved by the proposed global maximum test (26) is

perfect, while Biernacki’s test [5] only attains 0.22, when

the probability of false alarm (PFA) is constrained to

be 0.01.

Given a local maximum of the log-likelihood sus-

pected of being a suboptimal solution, one would like

to exploit knowledge of this local maximum to identify

alternative regions of the parameter space likely to con-

tain a better solution. The PSF h̃ corresponding to a

perturbed phase-screen Ψ + β can be expressed as the

modulus squared of a convolution of CTFs associated

with Ψ an β respectively

h̃ = c0
∣∣F−1

{
AejΨABe

jβ
}∣∣2

= c0
∣∣F−1

{
AejΨ

}
∗ F−1

{
ABe

jβ
}∣∣2

= c0|g ∗ g̃|2,

where AB is the binary aperture corresponding to the

support of A. Letting [h]m,n be the (m,n)th element

of a Nyquist sampled representation of the PSF, then

a point-wise bound on the magnitude of the change

induced by β is given by

|[ε]m,n| =
∣∣∣[h]m,n − c0|[g]m,n|2

∣∣∣

≤‖g̃ − aδ‖
[
‖g̃ − aδ‖+ 2

|[g]m,n|
‖g‖

]
, (29)

where δ is the Kronecker delta function, and a an

arbitrary complex constant such that |a| = 1. This

point-wise bound on the PSF perturbation ε, associated

with the wavefront perturbation β, is minimized when

∠a = ∠ [g̃]0,0. Under this condition, the right-hand side

of (29) is monotonic in the Strehl ratio [24] associated

with β, which we will denote as c0

∣∣∣[g̃]0,0(β)
∣∣∣
2

. Thus, the

set of wavefronts that maximize the Strehl ratio for a

fixed root mean square (RMS) perturbation strength

also minimizes the worst-case, point-wise error in the

perturbed PSF. These wavefronts are given by

{
β = arg max

β̃

c0

∣∣∣[g̃]0,0

(
β̃
)∣∣∣

2

:
∥∥∥β̃
∥∥∥
2

= τ

}
. (30)

A PSF h perturbed by a wavefront in (30) will result

in a new PSF h̃ that is point-wise close to h despite

its wavefront Ψ + β being τ waves RMS from Ψ . The

proposed test for global convergence can be used in

conjunction with this restarting strategy to search for

globally optimal solutions.

A Monte Carlo simulation was performed to assess

the efficacy of the proposed approach for identifying the

global maximum of the likelihood function. A simulated

imaging system [21] was configured to provide moderate

SNR images (20 dB), and the number of blur aberration

parameters was varied to alter the difficulty of the result-

ing inverse problem. As the number of Zernike modes in

the model increases, so does the probability of encoun-

tering local maxima. A limited-memory quasi-Newton

search [31] was used to identify stationary points of the

log-likelihood starting from a diffraction-limited model.

If the reparameterized embedding approach described in

Section 3.3 failed to reject the null hypothesis at a false
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alarm level α = 0.01 the search was terminated, oth-

erwise a new starting point 0.2 waves RMS away from

the current maximum was chosen according to (30),

and the search was continued. Figure 6 shows the mean

and standard errors of runtimes corresponding to 10

independent realizations of the same camera model. For

comparison, the simulated annealing algorithm provided

in MATLABr Optimization Toolbox version 8.0 was

used as a point of reference. The simulated annealing

algorithm was provided the objective function gradients

and was terminated according to an oracle criterion:
terminate the first time that any local maximum fell

within 0.01 waves RMS of the true solution. In the as-

tronomical imaging community, wavefront descriptions

of optical systems typically include Zernike models up

to at least radial-order 3 (7 Zernike modes). For models

of such high complexity, the proposed reparameterized

embedding strategy resulted in a five times reduction

in total runtime. Figure 7 illustrates a typical sequence

of PSFs associated with the global search procedure

when 12 Zernike modes parameterize the blur. Despite

the relatively small differences between the PSFs, the

two non-global local maxima (local #1 and local #2)

of the log-likelihood are associated with relatively large

wavefront perturbations errors of 0.117 and 0.115 waves

RMS, respectively.

0 2 4 6 8 10 12
Number of Zernike Modes

0

5

10

15

R
un

tim
e 

[h
rs

]

Optimization Strategy Runtime

Proposed Approach
Simulated Annealing

Fig. 6: Monte-Carlo study of optimization runtimes as

a function of the number of aberration modes in the

model. The proposed global convergence test reduces

runtime by at least a factor of 5.
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Fig. 7: A typical series of PSF estimates are shown along-

side the true solution (left column) for local maxima of

the log-likelihood function when 12 Zernike coefficients

parameterize the PSF. The associated errors relative to

the true solution are shown in the rightmost column.

5 Concluding Remarks

This paper addresses a principal computational bot-

tleneck in non-convex imaging and vision problems: It

determines if a local maximum found by a non-global

optimization algorithm is a global maximum. Specif-

ically, we introduced a powerful new method for val-

idating that a local maximum is a global maximum

when the objective function is specified as the likeli-

hood function associated with a parametric statistical

model. The proposed method implements a one-sided

threshold test on a novel validation function defined
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as the normalized difference between the log-likelihood

function and an augmented log-likelihood function, each

evaluated at a local maximum point. The augmented

log-likelihood is constructed by embedding the original

parameter vector into a higher dimensional parameter

space, a procedure we call reparameterized embedding,

and the validation function is evaluated at the local

maximum before thresholding. We proposed a computa-

tional spectral embedding procedure for identifying good

reparameterized embeddings, and numerical results are

presented exhibiting an extraordinarily high level of
detection accuracy, e.g., achieving significantly better

accuracy than the two-sided test proposed by Biernacki.

Finally, to demonstrate how our results can dramatically

impact non-convex imaging applications, we applied the

proposed test to a set of local maxima generated from

multiple restarts of an iterative maximum likelihood

algorithm for reconstructing camera blur from images

of a calibration target. When the test is used as a stop-

ping rule, i.e., the restarts are stopped when the test

declares a global maximum has been found, it reduced

total runtime by a factor of five.

Code for reproducing the key figures from this doc-

ument is available at https://github.com/jwleblan/

localMinima.
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