Skip to main content
Log in

An Alternative Definition for Digital Convexity

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

This paper proposes full convexity as an alternative definition of digital convexity, which is valid in arbitrary dimension. It solves many problems related to its usual definitions, like possible non-connectedness or non-simple connectedness, while encompassing its desirable features. Fully convex sets are digitally convex, but are also connected and simply connected. They have a morphological characterization, which induces a simple convexity test algorithm. Arithmetic planes are fully convex too. Full convexity implies local full convexity, hence it enables local shape analysis, with an unambiguous definition of convex, concave and planar points. As a kind of relative full convexity, we propose a natural definition of tangent subsets to a digital set. It gives rise to the tangential cover in 2D, and to consistent extensions in arbitrary dimension. Finally, we present two applications of tangency: the first one is a simple algorithm for building a polygonal mesh from a set of digital points, with reversibility property, the second one is the definition and computation of shortest paths within digital sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. 22(4), 469–483 (1996). https://doi.org/10.1145/235815.235821

    Article  MathSciNet  MATH  Google Scholar 

  2. Barvinok, A.I.: Computing the Ehrhart polynomial of a convex lattice polytope. Discrete Comput. Geom. 12(1), 35–48 (1994)

    Article  MathSciNet  Google Scholar 

  3. Brimkov, V., Coeurjolly, D., Klette, R.: Digital planarity-a review. Discret. Appl. Math. 155(4), 468–495 (2007)

    Article  MathSciNet  Google Scholar 

  4. Brimkov, V.E., Barneva, R.: Applications of digital geometry to surface reconstruction. Int. J. Comput. Vis. Biomech. 1(2), 163–172 (2016)

    Google Scholar 

  5. Brlek, S., Lachaud, J.O., Provençal, X.: Combinatorial view of digital convexity. In: International Conference on Discrete Geometry for Computer Imagery, pp. 57–68. Springer (2008)

  6. Brlek, S., Lachaud, J.O., Provençal, X., Reutenauer, C.: Lyndon + christoffel = digitally convex. Pattern Recognit. 42(10), 2239–2246 (2009). https://doi.org/10.1016/j.patcog.2008.11.010

    Article  MATH  Google Scholar 

  7. Buzer, L.: A linear incremental algorithm for Naive and standard digital lines and planes recognition. Graph. Models 65(1–3), 61–76 (2003). https://doi.org/10.1016/S1524-0703(03)00008-0

    Article  MATH  Google Scholar 

  8. Chan, T.M.: Optimal output-sensitive convex hull algorithms in two and three dimensions. Discrete Comput. Geom. 16(4), 361–368 (1996)

    Article  MathSciNet  Google Scholar 

  9. Charrier, E., Buzer, L.: An efficient and quasi linear worst-case time algorithm for digital plane recognition. In: Discrete Geometry for Computer Imagery (DGCI’2008), LNCS, vol. 4992, pp. 346–357. Springer (2008)

  10. Charrier, E., Lachaud, J.O.: Maximal planes and multiscale tangential cover of 3d digital objects. In: Proceedings International Workshop Combinatorial Image Analysis (IWCIA’2011), Lecture Notes in Computer Science, vol. 6636, pp. 132–143. Springer, Berlin (2011)

  11. Chazelle, B.: An optimal convex hull algorithm in any fixed dimension. Discrete Comput. Geom. 10(4), 377–409 (1993)

    Article  MathSciNet  Google Scholar 

  12. Chica, A., Williams, J., Andújar, C., Brunet, P., Navazo, I., Rossignac, J., Vinacua, À.: Pressing: Smooth isosurfaces with flats from binary grids. In: Computer Graphics Forum, vol. 27, pp. 36–46. Wiley Online Library (2008)

  13. Coeurjolly, D., Guillaume, A., Sivignon, I.: Reversible discrete volume polyhedrization using marching cubes simplification. In: Vision Geometry XII, vol. 5300, pp. 1–11. International Society for Optics and Photonics (2004)

  14. Coeurjolly, D., Miguet, S., Tougne, L.: Discrete curvature based on osculating circle estimation. In: International Workshop on Visual Form, pp. 303–312. Springer (2001)

  15. Coeurjolly, D., Miguet, S., Tougne, L.: 2d and 3d visibility in discrete geometry: an application to discrete geodesic paths. Pattern Recogn. Lett. 25(5), 561–570 (2004)

    Article  Google Scholar 

  16. Crombez, L., da Fonseca, G.D., Gérard, Y.: Efficient algorithms to test digital convexity. In: International Conference on Discrete Geometry for Computer Imagery, pp. 409–419. Springer (2019)

  17. Crombez, L., da Fonseca, G.D., Gérard, Y.: Efficiently testing digital convexity and recognizing digital convex polygons. J. Math. Imaging Vis. 62, 693–703 (2020)

    Article  MathSciNet  Google Scholar 

  18. Debled-Rennesson, I., Reveillès, J.: An incremental algorithm for digital plane recognition. In: Proceedings of the Discrete Geometry for Computer Imagery, pp. 194–205 (1994)

  19. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959). https://doi.org/10.1007/BF01386390

    Article  MathSciNet  MATH  Google Scholar 

  20. Dörksen-Reiter, H., Debled-Rennesson, I.: A linear algorithm for polygonal representations of digital sets. In: International Workshop on Combinatorial Image Analysis, pp. 307–319. Springer (2006)

  21. Eckhardt, U.: Digital lines and digital convexity. In: Digital and Image Geometry, pp. 209–228. Springer (2001)

  22. Ehrhart, E.: Sur les polyèdres rationnels homothétiques à n dimensions. C.R. Acad. Sci. 254, 616–618 (1962)

    MathSciNet  MATH  Google Scholar 

  23. Fernique, T.: Generation and recognition of digital planes using multi-dimensional continued fractions. Pattern Recognit. 42(10), 2229–2238 (2009)

    Article  Google Scholar 

  24. Feschet, F., Tougne, L.: Optimal time computation of the tangent of a discrete curve: Application to the curvature. In: International Conference on Discrete Geometry for Computer Imagery, pp. 31–40. Springer (1999)

  25. Françon, J., Papier, L.: Polyhedrization of the boundary of a voxel object. In: International Conference on Discrete Geometry for Computer Imagery, pp. 425–434. Springer (1999)

  26. Gérard, Y., Debled-Rennesson, I., Zimmermann, P.: An elementary digital plane recognition algorithm. Discret. Appl. Math. 151(1), 169–183 (2005)

    Article  MathSciNet  Google Scholar 

  27. Hübler, A., Klette, R., Voss, K.: Determination of the convex hull of a finite set of planar points within linear time. Elektron. Informationsverarb. Kybern. 17(2–3), 121–139 (1981)

    MathSciNet  MATH  Google Scholar 

  28. Kerautret, B., Lachaud, J.O.: Curvature estimation along noisy digital contours by approximate global optimization. Pattern Recognit. 42(10), 2265–2278 (2009)

    Article  Google Scholar 

  29. Kerautret, B., Lachaud, J.O.: Meaningful scales detection along digital contours for unsupervised local noise estimation. IEEE Trans. Pattern Anal. Mach. Intell. 34(12), 2379–2392 (2012)

    Article  Google Scholar 

  30. Kim, C.E., Rosenfeld, A.: Convex digital solids. IEEE Trans. Pattern Anal. Mach. Intell. 6, 612–618 (1982)

    Article  Google Scholar 

  31. Kim, C.E., Rosenfeld, A.: Digital straight lines and convexity of digital regions. IEEE Trans. Pattern Anal. Mach. Intell. 2, 149–153 (1982)

    Article  Google Scholar 

  32. Kiselman, C.O.: Characterizing digital straightness and digital convexity by means of difference operators. Mathematika 57(2), 355–380 (2011)

    Article  MathSciNet  Google Scholar 

  33. Klette, G.: Digital convexity and cavity trees. In: Pacific-Rim Symposium on Image and Video Technology, pp. 59–70. Springer (2013)

  34. Klette, R., Sun, H.J.: Digital planar segment based polyhedrization for surface area estimation. In: Proceedings of the Visual form 2001, LNCS, vol. 2059, pp. 356–366. Springer (2001)

  35. Lachaud, J.O.: An alternative definition for digital convexity. In: Lindblad, J., Malmberg, F., Sladoje, N. (eds.) Discrete Geometry and Mathematical Morphology, pp. 269–282. Springer International Publishing, Cham (2021)

    Chapter  Google Scholar 

  36. Lachaud, J.O., Meyron, J., Roussillon, T.: An optimized framework for plane-probing algorithms. J. Math. Imaging Vis. 62(5), 718–736 (2020). https://doi.org/10.1007/s10851-020-00965-6

    Article  MathSciNet  MATH  Google Scholar 

  37. Lachaud, J.O., Provençal, X., Roussillon, T.: An output-sensitive algorithm to compute the normal vector of a digital plane. J. Theor. Comput. Sci. (TCS) 624, 73–88 (2016). https://doi.org/10.1016/j.tcs.2015.11.021

    Article  MathSciNet  MATH  Google Scholar 

  38. Lachaud, J.O., Provençal, X., Roussillon, T.: Computation of the normal vector to a digital plane by sampling significant points. In: 19th IAPR International Conference on Discrete Geometry for Computer Imagery. Nantes, France (2016). https://hal.archives-ouvertes.fr/hal-01621492

  39. Lachaud, J.O., Provençal, X., Roussillon, T.: Two plane-probing algorithms for the computation of the normal vector to a digital plane. J. Math. Imaging Vis. 59(1), 23–39 (2017). https://doi.org/10.1007/s10851-017-0704-x

    Article  MathSciNet  MATH  Google Scholar 

  40. Lachaud, J.O., Vialard, A., de Vieilleville, F.: Fast, accurate and convergent tangent estimation on digital contours. Image Vis. Comput. 25(10), 1572–1587 (2007)

    Article  Google Scholar 

  41. Mesmoudi, M.M.: A simplified recognition algorithm of digital planes pieces. In: Proceedings of the Discrete Geometry for Computer Imagery, pp. 404–416 (2002)

  42. Provot, L., Debled-Rennesson, I.: 3D noisy discrete objects: segmentation and application to smoothing. Pattern Recognit. 42(8), 1626–1636 (2009)

    Article  Google Scholar 

  43. Ronse, C.: A bibliography on digital and computational convexity (1961–1988). IEEE Trans. Pattern Anal. Mach. Intell. 11(2), 181–190 (1989)

    Article  Google Scholar 

  44. Roussillon, T., Lachaud, J.O.: Digital plane recognition with fewer probes. In: Couprie, M., Cousty, J., Kenmochi, Y., Mustafa, N. (eds) 21st IAPR International Conference on Discrete Geometry for Computer Imagery, Lecture Notes in Computer Science, vol. 11414, pp. 380–393. Springer, Cham, Marne-la-Vallée, France (2019). https://doi.org/10.1007/978-3-030-14085-4_30. https://hal.archives-ouvertes.fr/hal-02087529

  45. Roussillon, T., Sivignon, I.: Faithful polygonal representation of the convex and concave parts of a digital curve. Pattern Recognit. 44(10–11), 2693–2700 (2011)

    Article  Google Scholar 

  46. Sivignon, I., Coeurjolly, D.: Minimum decomposition of a digital surface into digital plane segments is NP-hard. Discret. Appl. Math. 157(3), 558–570 (2009)

    Article  MathSciNet  Google Scholar 

  47. Sivignon, I., Dupont, F., Chassery, J.M.: Decomposition of a three-dimensional discrete object surface into discrete plane pieces. Algorithmica 38(1), 25–43 (2004)

    Article  MathSciNet  Google Scholar 

  48. Soille, P.: Morphological Image Analysis: Principles and Applications, 2nd edn. Springer, Berlin (2004). https://doi.org/10.1007/978-3-662-05088-0

  49. The DGtal Project: DGtal (2010). https://dgtal.org

  50. Veelaert, P.: Digital planarity of rectangular surface segments. IEEE Trans. Pattern Anal. Mach. Intell. 16(6), 647–652 (1994)

    Article  Google Scholar 

  51. Veelaert, P.: Fast combinatorial algorithm for tightly separating hyperplanes. In: Proceedings of the International Workshop Combinatorial Image Analysis (IWCIA’2012), pp. 31–44 (2012)

Download references

Acknowledgements

The author would like to thank the reviewers for their careful reading of the paper and for their constructive comments, which help us improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques-Olivier Lachaud.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work has been partly funded by CoMeDiC ANR-15-CE40-0006 research grant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lachaud, JO. An Alternative Definition for Digital Convexity. J Math Imaging Vis 64, 718–735 (2022). https://doi.org/10.1007/s10851-022-01076-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-022-01076-0

Keywords

Mathematics Subject Classification

Navigation