Skip to main content
Log in

LP Modelling for the Time Optimal Control Problem of the Heat Equation

  • Published:
Journal of Mathematical Modelling and Algorithms

Abstract

To find a control function which puts the heat equation in an unknown minimum time into a stationary regime is considered. Using an embedding method, the problem of finding the time optimal control is reduced to one consisting of minimizing a linear form over a set of positive measures. The resulting problem can be approximated by a finite dimensional linear programming (LP) problem. The nearly optimal control is constructed from the solution of the final LP problem. To find the lower bound of the optimal time a search algorithm is proposed. Some examples demonstrate the effectiveness of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gunzburger, M.D.: Perspectives In Flow Control and Optimization. In: Advances in Design and Control. SIAM, Philadelphia (2003)

    Google Scholar 

  2. Lions, J.L.: Some Aspects of the Control of Distributed Parameter Systems. SIAM Publications (1972)

  3. Neittaanmaki, P., Tiba, D.: Optimal Control of Nonlinear Parabolic Systems. Theory, Algorithms and Applications. M. Dekker, New York (1994)

    Google Scholar 

  4. Meidner, D., Vexler, B.: A priori error estimates for space-time finite element discretization of parabolic optimal control problems. Part I: Problems without control constraints. SIAM J. Control Optim. 47, 1150–1177 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chrysafinos, K.: Analysis and finite element approximations for distributed optimal control problems for implicit parabolic equations. J. Comput. Appl. Math. 231, 327–348 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Rösch, A.: Error estimates for parabolic optimal control problems with control constraints. Z. Anal. Anwend. 23, 353–376 (2006)

    Google Scholar 

  7. Tiba, D., Tröltzsch, F.: Error estimates for the discretization of the state constrained convex control problems. Numer. Funct. Anal. Optim. 17, 1005–1028 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. McNight, R.S., Bosarge W.E. Jr.: The Ritz-Galerkin procedure for parabolic control problems. SIAM J. Control Optim. 11, 510–524 (1973)

    Article  Google Scholar 

  9. Liu, W.B., Yan, N.: A posteriori error estimates for optimal control problems governed by parabolic equations. Numer. Math. 93, 497–521 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Liu, W.-B., Ma, H.-P., Tang, T., Yan, N.: A posteriori error estimates for DG time-stepping method for optimal control problems governed by parabolic equations. SIAM J. Numer. Anal. 42, 1032–1061 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Winther, R.: Initial value methods for parabolic control problems. Math. Comput. 34, 115–125 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  12. Malanowski, K.: Convergence of approximations vs. regularity of solutions for convex, control-constrained optimal-control problems. Appl. Math. Optim. 8, 69–95 (1981)

    Article  MathSciNet  Google Scholar 

  13. Lasiecka, I.: Rietz-Galerkin approximation of the time optimal boundary control problem for parabolic systems with Dirichlet boundary conditions. SIAM J. Control Optim. 22, 477–500 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chrysafinos, K., Gunzburger, M.D., Hou, L.S.: Semidiscrete approximations of optimal Robin boundary control problems constrained by semilinear parabolic PDE. J. Math. Anal. Appl. 323, 891–912 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rubio, J.E.: Control and Optimization; The Linear Treatment of Non-linear Problems. Manchester University Press, Manchester (1986)

    Google Scholar 

  16. Nazemi, A.R., Farahi, M.H., Zamirian, M.: Filtration problem in inhomogeneous dam by using embedding method. J. Appl. Math. Comput. 28, 313–332 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nazemi, A.R., Farahi, M.H., Mehne, H.H.: Optimal shape design of iron pole section of electromagnet. J. Phys. Lett. A 372, 3440–3451 (2008)

    Article  MathSciNet  Google Scholar 

  18. Nazemi, A.R., Farahi, M.H.: Control the Fibre Orientation Distribution at the Outlet of Contraction. J. Acta Appl. Math. 106, 279–292 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Farahi, M.H., Mehne, H.H., Borzabadi, A.H.: Wing drag minimization by using measure theory. J. Optim. Meth. Soft. 21, 169–177 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Farahi, M.H., Borzabadi, A.H., Mehne, H.H., Kamyad, A.V.: Measure theoretical approach for optimal shape design of a nozzle. J. Appl. Math. Comput. 17, 315–328 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mehne, H.H.: On an optimal shape design problem to control a thermoelastic deformation under a prescribed thermal treatment. J. Appl. Math. Model. 31, 663–675 (2007)

    Article  MATH  Google Scholar 

  22. Mehne, H.H., Farahi, M.H., Kamyad, A.V.: MILP modelling for the time optimal control problem in the case of multiple targets. Optim. Control Appl. Methods 27, 77–91 (2006)

    Article  MathSciNet  Google Scholar 

  23. Kamyad, A.V., Rubio, J.E., Wilson, D.A.: The optimal control of the multidimensional diffusion equation. J. Optim. Theory Appl. 70, 191–209 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  24. Banks, S.P.: State-Space and Frequency-domain Methods in the Control of Distributed Parameter Systems. Peter Peregrinus Ltd (1983)

  25. Rudin, W.: Functional Analysis, 2nd edn. McGraw-Hill, New York (1991)

    MATH  Google Scholar 

  26. Ghouila-houri, A.: Sur la Generalization de la Notion de Commande d’un System Guid- abie. Revue Francaise d’Automatique et Recherche Operationelle 1, 7–32 (1967)

    MathSciNet  MATH  Google Scholar 

  27. Rosenbloom, P.C.: Quelques classes de problems extremaux. Bull. Soc. Math. Fr. 80, 183–216 (1952) (England (1973))

    MATH  Google Scholar 

  28. Fletcher, R.: Practical Methods of Optimization. Wiley, New York (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Nazemi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazemi, A.R. LP Modelling for the Time Optimal Control Problem of the Heat Equation. J Math Model Algor 10, 227–244 (2011). https://doi.org/10.1007/s10852-011-9151-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10852-011-9151-7

Keywords

Mathematics Subject Classifications (2010)

Navigation