Skip to main content
Log in

Minimum entropy coloring

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

We study an information-theoretic variant of the graph coloring problem in which the objective function to minimize is the entropy of the coloring. The minimum entropy of a coloring is called the chromatic entropy and was shown by Alon and Orlitsky (IEEE Trans. Inform. Theory 42(5):1329–1339, 1996) to play a fundamental role in the problem of coding with side information. In this paper, we consider the minimum entropy coloring problem from a computational point of view. We first prove that this problem is NP-hard on interval graphs. We then show that, for every constant ε>0, it is NP-hard to find a coloring whose entropy is within (1−ε)log n of the chromatic entropy, where n is the number of vertices of the graph. A simple polynomial case is also identified. It is known that graph entropy is a lower bound for the chromatic entropy. We prove that this bound can be arbitrarily bad, even for chordal graphs. Finally, we consider the minimum number of colors required to achieve minimum entropy and prove a Brooks-type theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Accame M, De Natale FGB, Granelli F (2000) Efficient labeling procedures for image partition encoding. Signal Process 80(6):1127–1131

    Article  MATH  Google Scholar 

  • Agarwal S, Belongie S (2002) On the non-optimality of four color coding of image partitions. In: Proc. IEEE int. conf. image processing

  • Alon N, Orlitsky A (1996) Source coding and graph entropies. IEEE Trans Inf Theory 42(5):1329–1339

    Article  MATH  MathSciNet  Google Scholar 

  • Brooks RL (1941) On colouring the nodes of a network. Proc Camb Philos Soc 37:194–197

    MathSciNet  Google Scholar 

  • Cardinal J, Fiorini S, Van Assche G (2004) On minimum entropy graph colorings. In: Proc. IEEE int. symposium on information theory, p 43

  • Chvátal V (1975) On certain polytopes associated with graphs. J Comb Theory Ser B 18:138–154

    Article  MATH  Google Scholar 

  • de Werra D, Glover F, Silver EA (1995) A chromatic scheduling model with costs. IIE Trans 27:181–189

    Article  Google Scholar 

  • de Werra D, Hertz A, Kobler D, Mahadev NVR (2000) Feasible edge colorings of trees with cardinality constraints. Discrete Math 222(1-3):61–72

    Article  MATH  MathSciNet  Google Scholar 

  • Diestel R (2000) Graph theory, 2nd edn. Graduate Texts in Mathematics, vol 173. Springer, New York

    Google Scholar 

  • Erdös P, Hedetniemi ST, Laskar RC, Prins GCE (2003) On the equality of the partial Grundy and upper ochromatic numbers of graphs. Discrete Math 272(1):53–64. In honor of Frank Harary

    Article  MATH  MathSciNet  Google Scholar 

  • Feige U, Kilian J (1998) Zero knowledge and the chromatic number. J Comput Syst Sci 57(2):187–199

    Article  MATH  MathSciNet  Google Scholar 

  • Gabow HN (1990) Data structures for weighted matching and nearest common ancestors with linking. In: 1st annual ACM-SIAM symposium on discrete algorithms, pp 434–443

  • Garey MR, Johnson DS, Miller GL, Papadimitriou CH (1980) The complexity of coloring circular arcs and chords. SIAM J Algebr Discrete Methods 1(2):216–227

    Article  MATH  MathSciNet  Google Scholar 

  • Golumbic MC (2004) Algorithmic graph theory and perfect graphs. Academic Press, New York

    MATH  Google Scholar 

  • Grötschel M, Lovász L, Schrijver A (1993) Geometric algorithms and combinatorial optimization, 2nd edn. Algorithms and Combinatorics, vol 2. Springer, Berlin

    MATH  Google Scholar 

  • Halperin E, Karp RM (2004) The minimum-entropy set cover problem. In: Automata, languages and programming. Lecture notes in comput. sci., vol 3142. Springer, Berlin, pp 733–744

    Google Scholar 

  • Hardy GH, Littlewood JE, Pólya G (1988) Inequalities. Cambridge Mathematical Library. Cambridge University Press, Cambridge. Reprint of the 1952 edition

    MATH  Google Scholar 

  • Jansen K (2000) Approximation results for the optimum cost chromatic partition problem. J Algorithms 34:54–89

    Article  MATH  MathSciNet  Google Scholar 

  • Jensen TR, Toft B (1995) Graph coloring problems. Wiley–Interscience, New York

    MATH  Google Scholar 

  • Kahn J, Kim JH (1995) Entropy and sorting. J Comput Syst Sci 51(3):390–399

    Article  MathSciNet  Google Scholar 

  • Körner J (1973) Coding of an information source having ambiguous alphabet and the entropy of graphs. In: Transactions of the sixth Prague conference on information theory, statistical decision functions, random processes (Tech Univ., Prague, 1971; dedicated to the memory of Antonín Špaček). Academia, Prague, pp 411–425

    Google Scholar 

  • Marx D (2005) A short proof of the NP-completeness of minimum sum interval coloring. Oper Res Lett 33(4):382–384

    Article  MATH  MathSciNet  Google Scholar 

  • Pemmaraju SV, Raman R, Varadarajan K (2004) Buffer minimization using max-coloring. In: SODA ’04: Proceedings of the fifteenth annual ACM-SIAM symposium on discrete algorithms. Siam, Philadelphia, pp 562–571

    Google Scholar 

  • Simonyi G (2001) Perfect graphs and graph entropy. An updated survey. In: Perfect graphs. Discrete math. optim. Wiley, Chichester, pp 293–328

    Google Scholar 

  • Tucker A (1980) An efficient test for circular-arc graphs. SIAM J Comput 9(1):1–24

    Article  MATH  MathSciNet  Google Scholar 

  • Witsenhausen HS (1976) The zero-error side information problem and chromatic numbers. IEEE Trans Inf Theory 22(5):592–593

    Article  MATH  MathSciNet  Google Scholar 

  • Zhao Q, Effros M (2003) Low complexity code design for lossless and near-lossless side information source codes. In: Proc. IEEE data compression conf.

  • Zuckerman D (2007) Linear degree extractors and the inapproximability of max clique and chromatic number. Theory Comput 3(6):103–128

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwenaël Joret.

Additional information

S. Fiorini acknowledges the support from the Fonds National de la Recherche Scientifique and GERAD-HEC Montréal.

G. Joret is a F.R.S.-FNRS Research Fellow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cardinal, J., Fiorini, S. & Joret, G. Minimum entropy coloring. J Comb Optim 16, 361–377 (2008). https://doi.org/10.1007/s10878-008-9152-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-008-9152-2

Keywords

Navigation