Skip to main content
Log in

Constraint bipartite vertex cover: simpler exact algorithms and implementations

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

Constraint bipartite vertex cover is a graph-theoretical formalization of the spare allocation problem for reconfigurable arrays. We report on an implementation of a parameterized algorithm for this problem. This has led to considerable simplifications of the published, quite sophisticated algorithm. Moreover, we can prove that the mentioned algorithm could be quite efficient in practial situations. We also discuss possible generalizations and enhancements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bai G (2007) Ein eingeschränktes Knotenüberdeckungsproblem in bipartiten Graphen. Diplomarbeit, FB IV, Informatik, Universität Trier, Germany

  • Bai G, Fernau H (2008) Constraint bipartite vertex cover: simpler exact algorithms and implementations. In: Preparata FP, Wu X, Yin J (eds) Frontiers in algorithmics FAW. LNCS, vol 5059. Springer, Berlin, pp 67–78

    Chapter  Google Scholar 

  • Bhatia D, Rajagopalan R, Katkoori S (1994) Hierarchical reconfiguration of VLSI/WSI arrays. In: Proceedings of the seventh international conference on VLSI design, pp 349–352

  • Blough DM (1991) On the reconfiguration of memory arrays containing clustered faults. In: Fault tolerant computing, Los Alamitos, CA, USA, June 1991. IEEE Computer Society, Los Alamitos, pp 444–451

    Google Scholar 

  • Blough DM, Pelc A (1993) A clustered failure model for the memory array reconfiguration problem. IEEE Trans Comput 42(5):518–528

    Article  Google Scholar 

  • Che W, Koren I (1992) Fault spectrum analysis for fast spare allocation in reconfigurable arrays. In: International workshop on defect and fault tolerance in VLSI systems. IEEE Press, New York, pp 60–69

    Chapter  Google Scholar 

  • Chen J, Kanj IA (2003) Constrained minimum vertex cover in bipartite graphs: complexity and parameterized algorithmics. J Comput Syst Sci 67:833–847

    Article  MathSciNet  MATH  Google Scholar 

  • Downey RG, Fellows MR (1999) Parameterized complexity. Springer, Berlin

    Book  Google Scholar 

  • Evans RC (1981) Testing repairable RAMs and mostly good memories. In: Proceedings of the IEEE int’l test conf, pp 49–55

  • Fernau H (2002) On parameterized enumeration. In: Ibarra OH, Zhang L (eds) Computing and combinatorics, proceedings COCOON 2002. LNCS, vol 2383. Springer, Berlin, pp 564–573

    Chapter  Google Scholar 

  • Fernau H (2005) Parameterized algorithmics: a graph-theoretic approach. Habilitationsschrift, Universität Tübingen, Germany

  • Fernau H, Niedermeier R (2001) An efficient exact algorithm for constraint bipartite vertex cover. J Algorithms 38(2):374–410

    Article  MathSciNet  MATH  Google Scholar 

  • Fernau H, Raible D (2009) Searching trees: an essay. In: Chen J, Cooper SB (eds) TAMC. LNCS, vol 5532. Springer, Berlin, pp 59–70

    Google Scholar 

  • Haddad RW, Dahbura AT, Sharma AB (1991) Increased throughput for the testing and repair of RAMs with redundancy. IEEE Trans Comput 40(2):154–166

    Article  MathSciNet  Google Scholar 

  • Hamdioui S, Gaydadjiev G, van de Goor AJ (2004) The state-of-art and future trends in testing embedded memories. In: Records of the international workshop on memory technology, design and testing MTDT. IEEE Press, New York, pp 54–59

    Google Scholar 

  • Handa K, Haruki K (2000) A reconfiguration algorithm for memory arrays containing faulty spares. IEICE Trans Fundam E83-A(6):1123–1130

    Google Scholar 

  • Hemmady VG, Reddy SM (1989) On the repair of redundant RAMs. In: Proc 26th ACM/IEEE design automation conf, pp 710–713

  • Kawagoe T, Ohtani J, Niiro M, Ooishi T, Hamada M, Hidaka H (2000) A built-in self-repair analyzer (CRESTA) for embedded DRAMs. In: Proc int test conf (ITC). IEEE Press, New York, pp 567–573

    Google Scholar 

  • Knuth DE (1975) Estimating the efficiency of backtrack programs. Math Comput 29(129):121–136

    Article  MathSciNet  MATH  Google Scholar 

  • Koren I, Pradhan DK (1987) Modeling the effect of redundancy on yield and performance of VLSI systems. IEEE Trans Comput 36(3):344–355

    Article  Google Scholar 

  • Kuo S-Y, Fuchs WK (1987) Efficient spare allocation for reconfigurable arrays. IEEE Des Test 4:24–31

    Article  Google Scholar 

  • Lagoudakis MG (1999) An IDA* algorithm for optimal spare allocation. In: SAC’99: proceedings of the 1999 ACM symposium on applied computing. ACM, New York, pp 486–488

    Chapter  Google Scholar 

  • Lin H-Y, Yeh F-M, Kuo S-Y (2006) An efficient algorithm for spare allocation problems. IEEE Trans Reliab 55(2):369–378

    Article  Google Scholar 

  • Liu J, Cheng Z (1996) A new bound on the feedback vertex sets in cubic graphs. Discrete Math 148:119–131

    Article  MathSciNet  MATH  Google Scholar 

  • Lombardi F, Huang WK (1988) Approaches to the repair of VLSI/WSI PRAMs by row/column deletion. In: International symposium on fault-tolerant computing (FTCS’88), Washington, DC, USA, June 1988. IEEE Computer Society, Los Alamitos, pp 342–347

    Google Scholar 

  • Low CP, Leong HW (1996) A new class of efficient algorithms for reconfiguration of memory arrays. IEEE Trans Comput 45(5):614–618

    Article  MATH  Google Scholar 

  • Mehlhorn K (1984) Graph algorithms and NP-completeness. Springer, Berlin

    MATH  Google Scholar 

  • Meyer FJ, Pradhan DK (1989) Modeling defect spatial distribution. IEEE Trans Comput 38(4):538–546

    Article  Google Scholar 

  • Purdom PW (1978) Tree size by partial backtracking. SIAM J Comput 7:481–491

    Article  MathSciNet  MATH  Google Scholar 

  • Shi W, Fuchs WK (1992) Probabilistic analysis and algorithms for reconfiguration of memory arrays. IEEE Trans Comput Aided Des 11(9):1153–1160

    Article  Google Scholar 

  • Speckenmeyer E (1988) On feedback vertex sets and nonseparating independent sets in cubic graphs. J Graph Theory 3:405–412

    Article  MathSciNet  Google Scholar 

  • Tazari S, Müller-Hannemann M (2009) Dealing with large hidden constants: engineering a planar Steiner tree PTAS. In: Finocchi I, Hershberger J (eds) Proceedings of the workshop on algorithm engineering and experiments, ALENEX 2009. SIAM, Philadelphia, pp 120–131

    Google Scholar 

  • Ueno S, Kajitani Y, Gotoh S (1988) On the nonseparating independent set problem and feedback set problem for graphs with no vertex degree exceeding three. Discrete Math 72:355–360

    Article  MathSciNet  MATH  Google Scholar 

  • Wang J, Xu X, Liu Y (2007) An exact algorithm based on chain implication for the Min-CVCB problem. In: Dress AWM, Xu Y, Zhu B (eds) Combinatorial optimization and applications COCOA. LNCS, vol 4616. Springer, Berlin, pp 343–353

    Chapter  Google Scholar 

  • Yu F, Tsai C-H, Huang Y-W, Lin H-Y, Lee DT, Kuo S-Y (2005) Efficient exact spare allocation via boolean satisfiability. In: Proceedings of the 20th IEEE international symposium of defect and fault tolerance in VLSI systems DFT’05, pp 361–370

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Fernau.

Additional information

An extended abstract of this paper appeared in Bai and Fernau (2008).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, G., Fernau, H. Constraint bipartite vertex cover: simpler exact algorithms and implementations. J Comb Optim 23, 331–355 (2012). https://doi.org/10.1007/s10878-010-9289-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-010-9289-7

Keywords

Navigation