Skip to main content
Log in

Shifting strategy for geometric graphs without geometry

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

We give a simple framework which is an alternative to the celebrated and widely used shifting strategy of Hochbaum and Maass (J. ACM 32(1):103–136, 1985) which has yielded efficient algorithms with good approximation bounds for numerous optimization problems in low-dimensional Euclidean space. Our framework does not require the input graph/metric to have a geometric realization—it only requires that the input graph satisfy some weak property referred to as growth boundedness. Growth bounded graphs form an important graph class that has been used to model wireless networks. We show how to apply the framework to obtain a polynomial time approximation scheme (PTAS) for the maximum (weighted) independent set problem on this important graph class; the problem is W[1]-complete.

Via a more sophisticated application of our framework, we show how to obtain a PTAS for the maximum (weighted) independent set for intersection graphs of (low-dimensional) fat objects that are expressed without geometry. Erlebach et al. (SIAM J. Comput. 34(6):1302–1323, 2005) and Chan (J. Algorithms 46(2):178–189, 2003) independently gave a PTAS for maximum weighted independent set problem for intersection graphs of fat geometric objects, say ball graphs, which required a geometric representation of the input. Our result gives a positive answer to a question of Erlebach et al. (SIAM J. Comput. 34(6):1302–1323, 2005) who asked if a PTAS for this problem can be obtained without access to a geometric representation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arora S (1998) Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. J ACM 45(5):753–782

    Article  MathSciNet  MATH  Google Scholar 

  • Aspnes J, Goldenberg DK, Yang YR (2004) On the computational complexity of sensor network localization. In: ALGOSENSORS ’04: first international workshop on algorithmic aspects of wireless sensor networks, Turku, Finland. Springer, Berlin, pp 32–44

    Chapter  Google Scholar 

  • Baker B (1994) Approximation algorithms for np-complete problems on planar graphs. J ACM 41(1):153–180

    Article  MATH  Google Scholar 

  • Bilò V, Caragiannis I, Kaklamanis C, Kanellopoulos P (2005) Geometric clustering to minimize the sum of cluster sizes. In: ESA, pp 460–471

  • Breu H, Kirkpatrick DG (1998) Unit disk graph recognition is NP-hard. Comput Geom Theory Appl 9(1–2):3–24

    Article  MathSciNet  MATH  Google Scholar 

  • Bruck J, Gao J, Jiang A (2005) Localization and routing in sensor networks by local angle information. In: MobiHoc ’05: proceedings of the 6th ACM international symposium on mobile ad hoc networking and computing. ACM, New York, pp 181–192

    Chapter  Google Scholar 

  • Bulusu N, Heidemann J, Estrin D (2000) GPS-less low cost outdoor localization for very small devices

  • Chalermsook P, Chuzhoy J (2009) Maximum independent set of rectangles. In: SODA, pp 892–901

  • Chan TM (2003) Polynomial-time approximation schemes for packing and piercing fat objects. J Algorithms 46(2):178–189

    Article  MathSciNet  MATH  Google Scholar 

  • Chan TM, Har-Peled S (2009) Approximation algorithms for maximum independent set of pseudo-disks. In: SoCG

  • Chintalapudi K, Govindan R, Sukhatme G, Dhariwal A (2004) Ad-hoc localization using ranging and sectoring. In: INFOCOM

  • Dhandapani R (2008) Greedy drawings of triangulations. In: SODA, pp 102–111

  • Erlebach T, van Leeuwen EJ (2008) Approximating geometric coverage problems. In: SODA, pp 1267–1276

  • Erlebach T, Jansen K, Seidel E (2005) Polynomial-time approximation schemes for geometric intersection graphs. SIAM J Comput 34(6):1302–1323

    Article  MathSciNet  MATH  Google Scholar 

  • Fakcharoenphol J, Rao SB, Talwar K (2003) A tight bound on approximating arbitrary metrics by tree metrics. In: STOC, pp 448–455

  • Flury R, Pemmaraju SV, Wattenhofer R (2009) Greedy routing with bounded stretch. In: INFOCOM

  • Gibson M, Kanade G, Krohn E, Pirwani IA, Varadarajan KR (2008) On metric clustering to minimize the sum of radii. In: SWAT, pp 282–293

  • Goodrich MT, Strash D (2009) Succinct greedy geometric routing in the Euclidean plane. In: ISAAC, pp 781–791

  • Hochbaum DS, Maass W (1985) Approximation schemes for covering and packing problems in image processing and VLSI. J ACM 32(1):130–136

    Article  MathSciNet  MATH  Google Scholar 

  • Hunt HB III, Marathe MV, Radhakrishnan V, Ravi SS, Rosenkrantz DJ, Stearns RE (1994) Approximation schemes using l-reductions. In: FSTTCS, pp 342–353

  • Hunt HB III, Marathe MV, Radhakrishnan V, Ravi SS, Rosenkrantz DJ, Stearns RE (1998) Nc-approximation schemes for np- and pspace-hard problems for geometric graphs. J Algorithms 26(2):238–274

    Article  MathSciNet  MATH  Google Scholar 

  • Krauthgamer R, Lee JR (2007) The intrinsic dimensionality of graphs. Combinatorica 27(5):551–585

    Article  MathSciNet  MATH  Google Scholar 

  • Kuhn F, Moscibroda T, Nieberg T, Wattenhofer R (2005a) Fast deterministic distributed maximal independent set computation on growth-bounded graphs. In: DISC, pp 273–287

  • Kuhn F, Moscibroda T, Wattenhofer R (2005b) On the locality of bounded growth. In: PODC, pp 60–68

  • Kuhn F, Nieberg T, Moscibroda T, Wattenhofer R (2005c) Local approximation schemes for ad hoc and sensor networks. In: DIALM-POMC, pp 97–103

  • Kuhn F, Moscibroda T, O’Dell R, Wattenhofer M, Wattenhofer R (2010) Virtual coordinates for ad hoc and sensor networks. Personal communication

  • Lev-Tov N, Peleg D (2005) Polynomial time approximation schemes for base station coverage with minimum total radii. Comput Netw 47(4):489–501

    Article  MATH  Google Scholar 

  • Marx D (2005) Efficient approximation schemes for geometric problems? In: ESA, pp 448–459

  • Moitra A, Leighton T (2008) Some results on greedy embeddings in metric spaces. In: FOCS, pp 337–346

  • Nagpal R, Shrobe HE, Bachrach J (2003) Organizing a global coordinate system from local information on an ad hoc sensor network. In: IPSN ’03: proceedings of the second international symposium on information processing in sensor networks. ACM, New York, pp 333–348

    Google Scholar 

  • Nieberg T, Hurink J (2005) A PTAS for the minimum dominating set problem in unit disk graphs. In: WAOA, pp 296–306

  • Nieberg T, Hurink J, Kern W (2004) A robust PTAS for maximum weight independent sets in unit disk graphs. In: WG, pp 214–221

  • Nieberg T, Hurink J, Kern W (2008) Approximation schemes for wireless networks. ACM Trans Algorithms 4(4):1–17

    Article  MathSciNet  Google Scholar 

  • Papadimitriou CH, Ratajczak D (2005) On a conjecture related to geometric routing. Theor Comput Sci 344(1):3–14

    Article  MathSciNet  MATH  Google Scholar 

  • Pemmaraju SV, Pirwani IA (2007) Good quality virtual realization of unit ball graphs. In: ESA, pp 311–322

  • Pirwani IA, Salavatipour MR (2010) A weakly robust PTAS for minimum clique partition in unit disk graphs. In: SWAT

  • Raghavan V, Spinrad J (2001) Robust algorithms for restricted domains. In: SODA ’01: proceedings of the twelfth annual ACM-SIAM symposium on discrete algorithms. Society for Industrial and Applied Mathematics, Philadelphia, pp 460–467

    Google Scholar 

  • Schneider J, Wattenhofer R (2008) A log-star distributed maximal independent set algorithm for growth-bounded graphs. In: PODC, pp 35–44

  • Talwar K (2004) Bypassing the embedding: algorithms for low dimensional metrics. In: STOC. ACM, New York, pp 281–290

    Google Scholar 

  • Whitehouse K, Culler DE (2002) Calibration as parameter estimation in sensor networks. In: WSNA, pp 59–67

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imran A. Pirwani.

Additional information

The research was supported by Alberta Ingenuity.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pirwani, I.A. Shifting strategy for geometric graphs without geometry. J Comb Optim 24, 15–31 (2012). https://doi.org/10.1007/s10878-010-9319-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-010-9319-5

Keywords

Navigation