Skip to main content
Log in

Geometric rounding: a dependent randomized rounding scheme

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

We develop a new dependent randomized rounding method for approximation of a number of optimization problems with integral assignment constraints. The core of the method is a simple, intuitive, and computationally efficient geometric rounding that simultaneously rounds multiple points in a multi-dimensional simplex to its vertices. Using this method we obtain in a systematic way known as well as new results for the hub location, metric labeling, winner determination and consistent labeling problems. A comprehensive comparison to the dependent randomized rounding method developed by Kleinberg and Tardos (J. ACM 49(5):616–639, 2002) and its variants is also conducted. Overall, our geometric rounding provides a simple and effective alternative for rounding various integer optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ageev AA, Sviridenko MI (2004) Pipage rounding: a new method of constructing algorithms with proven performance guarantee. J Comb Optim 8:307–328

    Article  MathSciNet  MATH  Google Scholar 

  • Bartal Y (1996) Probabilistic approximation of metric spaces and its algorithmic applications. In: FOCS ’96: proceedings of the 37th annual symposium on foundations of computer science, Washington, DC, USA, 1996. IEEE Comput Soc, Los Alamitos, p 184

    Google Scholar 

  • Berman P, Krysta P (2003) Optimizing misdirection. In: SODA ’03: proceedings of the fourteenth annual ACM-SIAM symposium on discrete algorithms, Philadelphia, PA, USA, 2003. Soc for Industr & Appl Math, Philadelphia, pp 192–201

    Google Scholar 

  • Bertsimas D, Vohra R (1998) Rounding algorithms for covering problems. Math Program 80(1):63–89

    Article  MathSciNet  MATH  Google Scholar 

  • Bertsimas D, Teo C, Vohra R (1999a) Analysis of lp relaxations for multiway and multicut problems. Networks 34(2):102–114

    Article  MathSciNet  MATH  Google Scholar 

  • Bertsimas D, Teo C, Vohra R (1999b) On dependent randomized rounding algorithms. Oper Res Lett 24(3):105–114

    Article  MathSciNet  MATH  Google Scholar 

  • Bryan D, O’Kelly ME (1999) Hub-and-spoke networks in air transportation: an analytical review. J Reg Sci 39(2):275–295

    Article  Google Scholar 

  • Calinescu G, Karloff H, Rabani Y (1998) An improved approximation algorithm for multiway cut. In: STOC ’98: proceedings of the thirtieth annual ACM symposium on theory of computing, New York, NY, USA, 1998. ACM, New York, pp 48–52

    Chapter  Google Scholar 

  • Campbell JF (1996) Hub location and the p-hub median problem. Oper Res 44:923–935

    Article  MathSciNet  MATH  Google Scholar 

  • Chekuri C, Khanna S, Naor J, Zosin L (2001) Approximation algorithms for the metric labeling problem via a new linear programming formulation. In: Proceedings of the twelfth annual ACM-SIAM symposium on discrete algorithms (SODA), 2001

  • Devroye L (1986) Non-uniform random variate generation

  • Dobzinski S, Nisan N, Schapira M (2005) Approximation algorithms for combinatorial auctions with complement free bidders. In: Proceedings of the thirty-seventh annual ACM symposium on theory of computing (STOC), pp 610–618

  • Feige U (1998) A threshold of ln n for approximating set cover. J ACM 45(4):634–652

    Article  MathSciNet  MATH  Google Scholar 

  • Gandhi R, Khuller S, Parthasarathy S, Srinivasan A (2006) Dependent rounding and its applications to approximation algorithms. J ACM 53(3):324–360

    Article  MathSciNet  Google Scholar 

  • Ge D (2009) Geometric rounding: theory and application. PhD thesis

  • Goemans MX, Williamson DP (1995a) Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J ACM 42:1115–1145

    Article  MathSciNet  MATH  Google Scholar 

  • Goemans MX, Williamson DP (1995b) New \(\frac{3}{4}\)-approximation algorithms for the maximum satisfiability problem. SIAM J Discrete Math 7(4):565–666

    MathSciNet  Google Scholar 

  • Halldórsson M (1998) Approximations of independent sets in graphs. In: APPROX ’98: proceedings of the international workshop on approximation algorithms for combinatorial optimization, London, UK, 1998. Springer, Berlin, pp 1–13

    Google Scholar 

  • Hastad J (1999) Clique is hard to approximate within n 1−ε. Acta Math 182:105–142

    Article  MathSciNet  MATH  Google Scholar 

  • Hochbaum DS (1982) Approximation algorithms for the set covering and vertex cover problems. SIAM J Comput 11(3):555–556

    Article  MathSciNet  MATH  Google Scholar 

  • Kleinberg J, Tardos É (2002) Approximation algorithms for classification problems with pairwise relationships: metric labeling and Markov random fields. J ACM 49(5):616–639

    Article  MathSciNet  Google Scholar 

  • Krauthgamer R, Roughgarden T (2008) Metric clustering via consistent labeling. In: SODA ’08: proceedings of the nineteenth annual ACM-SIAM symposium on discrete algorithms, Philadelphia, PA, USA, 2008. Soc for Industr & Appl Math, Philadelphia, pp 809–818

    Google Scholar 

  • Lehmann DJ, O’Callaghan LI, Shoham Y (1999) Truth revelation in approximately efficient combinatorial auctions. In: ACM conference on electronic commerce, pp 96–102

  • O’Kelly ME (1987) A quadratic integer program for the location of interacting hub facilities. Eur J Oper Res 33

  • O’Kelly ME, Skorin-Kapov J, Skorin-Kapov D (1995) Lower bounds for the hub location problem. Manage Sci 41:713–728

    Article  MATH  Google Scholar 

  • Raghavan P (1988) Probabilistic construction of deterministic algorithms: approximating packing integer programs. J Comput Syst Sci 37(2):130–143

    Article  MathSciNet  MATH  Google Scholar 

  • Raghavan P, Thompson CD (1987) Randomized rounding: a technique for provably good algorithms and algorithmic proofs. Combinatorica 7:365–374

    Article  MathSciNet  MATH  Google Scholar 

  • Ross SM (2006) Introduction to probability models, 9th edn. Academic Press, Orlando

    MATH  Google Scholar 

  • Shmoys DB, Tardos É (1993) An approximation algorithm for the generalized assignment problem. Math Program 62(3):461–474

    Article  MathSciNet  MATH  Google Scholar 

  • Srinivasan A (1996) An extension of the lovász local lemma, and its applications to integer programming. In: SODA ’96: proceedings of the seventh annual ACM-SIAM symposium on discrete algorithms, Philadelphia, PA, USA, pp 6–15

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongdong Ge.

Additional information

This research is supported by the Boeing Company.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ge, D., He, S., Ye, Y. et al. Geometric rounding: a dependent randomized rounding scheme. J Comb Optim 22, 699–725 (2011). https://doi.org/10.1007/s10878-010-9320-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-010-9320-z

Keywords

Navigation