Skip to main content
Log in

Dynamic monopolies and feedback vertex sets in cycle permutation graphs, generalized Petersen graphs and torus cordalis

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

In this paper, we use the connection between dynamic monopolies and feedback vertex sets to establish explicit formulas and new bounds for decycling number \(\nabla (G)\) when \(G\) is one of the following classes of graphs: cycle permutation graphs, generalized Petersen graphs, and torus cordalis. In the first part of this paper, we show that if \(G\) is a cycle permutation graph or a generalized Petersen graph on \(2n\) vertices, then \(\nabla (G)=\lceil (n+1)/2\rceil \). These results extend a recent result by Zaker (Discret Math 312:1136–1143, 2012) and partially answer a question of Bau and Beineke (Australas J Comb 25:285–298, 2002). Note that our definition of a generalized Petersen graph is more general than the one used in Zaker (Discret Math 312:1136–1143, 2012). The second and major part of this paper is devoted to proving new upper bounds and exact values on the size of the minimum feedback vertex set and minimum dynamic monopoly for torus cordalis. Our results improve the previous results by Flocchini in 2004.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ackerman E, Ben-Zwi O, Wolfovitz G (2010) Combinatorial model and bounds for target set selection. Theoret Comput Sci 411:4017–4022

  • Adams SS, Troxell DS, Zinnen SL (2011) Dynamic monopolies and feedback vertex sets in hexagonal grids. Comput Math Appl 62:4049–4057

    Article  MathSciNet  MATH  Google Scholar 

  • Albertson MO, Berman D (1979) A conjecture on planar graphs. Graph theory and related topics. Academic Press, New York, p 357

    Google Scholar 

  • Bau S, Beineke LW (2002) The decycling number of graphs. Australas J Comb 25:285–298

    MathSciNet  MATH  Google Scholar 

  • Beineke LW, Vandell RC (1997) Decycling graphs. J Graph Theory 25:59–77

    Article  MathSciNet  MATH  Google Scholar 

  • Ben-Zwi O, Hermelin D, Lokshtanov D, Newman I (2011) Treewidth governs the complexity of target set selection. Discret Optim 8:87–96

    Article  MathSciNet  MATH  Google Scholar 

  • Berger E (2001) Dynamic monopolies of constant size. J Comb Theory Ser B 83:191–200

    Article  MATH  Google Scholar 

  • Chartrand G, Harary F (1967) Planar permutation graphs. Ann Inst Henri Poincaré Sect B 3:433–438

    MathSciNet  MATH  Google Scholar 

  • Chartrand G, Frechen JB (1968) On the chromatic number of permutation graphs. In: Harary F (ed) Proof techniques in graph theory, proceedings of the second ann arbor graph theory conference. Academic Press, New York, pp 21–24

    Google Scholar 

  • Chen N (2009) On the approximability of influence in social networks. SIAM J Discret Math 23:1400–1415

  • Chiang C-Y, Huang L-H, Li B-J, Wu J, Yeh H-G (2013) Some results on the target set selection problem. J Comb Optim 25:702–715

  • Chiang C-Y, Huang L-H, Yeh H-G (2013) Target set selection problem for honeycomb networks. SIAM J Discret Math 23:310–328

  • Coxeter HSM (1950) Self-dual configurations and regular graphs. Bull Am Math Soc 56:413–455

    Article  MathSciNet  MATH  Google Scholar 

  • Domingos P, Richardson M (2001) Mining the network value of customers. In: Proceedings of ACM SIGKDD 2001, San Francisco, pp 57–66

  • Dreyer PA, Roberts FS (2009) Irreversible \(k\)-threshold processes: graph-theoretical threshold models of the spread of disease and of opinion. Discret Appl Math 157:1615–1627

    Article  MathSciNet  MATH  Google Scholar 

  • Festa P, Pardalos PM, Resende MGC (2000) Feedback set problems. In: Du D-Z, Pardalos PM (eds) Handbook of combinatorial optimization, vol A. Kluwer Academic Publishers, Dordrecht, pp 209–259

    Google Scholar 

  • Flocchini P, Geurts F, Santoro N (2001) Optimal irreversible dynamos in chordal rings. Discret Appl Math 113:23–42

    Article  MathSciNet  MATH  Google Scholar 

  • Flocchini P, Královič R, Ruźička P, Roncato A, Santoro N (2003) On time versus size for monotone dynamic monopolies in regular topologies. J Discret Algorithms 1:129–150

    Article  MATH  Google Scholar 

  • Flocchini P, Lodi E, Luccio F, Pagli L, Santoro N (2004) Dynamic monopolies in tori. Discret Appl Math 137:197–212

    Article  MathSciNet  MATH  Google Scholar 

  • Flocchini P (2009) Contamination and decontamination in majority-based systems. J Cell Autom 4:183–200

    MathSciNet  MATH  Google Scholar 

  • Focardi R, Luccio FL, Peleg D (2000) Feedback vertex set in hypercubes. Inform Process Lett 76:1–5

    Article  MathSciNet  Google Scholar 

  • Garey MR, Johnson DS (1979) Computers and Intractability: a guide to the theory of NP-completeness. In: Freeman WH (ed) A series of books in the mathematical sciences. Freeman&Co, San Francisco

  • Kempe D, Kleinberg J, Tardos E (2003) Maximizing the spread of influence through a social network. In: Proceedings of the 9th ACM SIGKDD international conference on knowledge discovery and data mining, pp 137–146

  • Kempe D, Kleinberg J, Tardos E (2005) Influential nodes in a diffusion model for social networks. In: Proceedings of the 32th international colloquium on automata, languages and programming, pp 1127–1138

  • Li D, Liu Y (1999) A polynomial algorithm for finding the minimum feedback vertex set of a \(3\)-regular simple graph. Acta Math Sci 19:375–381

    MATH  Google Scholar 

  • Luccio F (1998) Almost exact minimum feedback vertex set in meshes and butterflies. Inf Process Lett 66:59–64

    Article  MathSciNet  MATH  Google Scholar 

  • Luccio F, Pagli L, Sanossian H (1999) Irreversible dynamos in butterflies. In: 6th international colloquium on structural information and communication complexity (SIROCCO), pp 204–218

  • Peleg D (1998) Size bounds for dynamic monopolies. Discret Appl Math 86:263–273

    Article  MathSciNet  MATH  Google Scholar 

  • Peleg D (2002) Local majorities, coalitions and monopolies in graphs: a review. Theoret Comput Sci 282:231–257

    Article  MathSciNet  MATH  Google Scholar 

  • Pike DA, Zou Y (2005) Decycling cartesian products of two cycles. SIAM J Discret Math 19:651–663

    Article  MathSciNet  MATH  Google Scholar 

  • Richardson M, Domingos P (2002) Mining knowledge-sharing sites for viral marketing. In: Proceedings of the 8th ACM SIGKDD, Edmonton, Canada, pp 61–70

  • Roberts FS (2006) Graph-theoretical problems arising from defending against bioterrorism and controlling the spread of fires. In: Proceedings of the DIMACS/DIMATIA/Renyi combinatorial challenges conference, Piscataway, NJ

  • Roberts FS (2003) Challenges for discrete mathematics and theoretical computer science in the defense against bioterrorism. In: Banks HT, Castillo-Chave C (eds) Bioterrorism: mathematical modeling applications in homeland security, Front. Appl. Mathem., vol 28. SIAM, Philadelphia, pp 1–34

    Chapter  Google Scholar 

  • Shamir A (1979) A linear time algorithm for finding minimum cutsets in reduced graphs. SIAM J Comput 8:654–655

    Article  MathSciNet  Google Scholar 

  • Speckenmeyer E (1988) On the feedback vertex sets and nonseparating independent sets in cubic graphs. J Graph Theory 12:405–412

  • Stueckle S, Ringeisen RD (1984) Generalized Petersen graphs which are cycle permutation graphs. J Comb Theory B 37:142–150

  • Ueno S, Kajitani Y, Gotoh S (1988) On the nonseparating independent set problem and feedback set problem for graphs with no vertex degree exceeding three. Discret Math 72:355–360

    Article  MathSciNet  MATH  Google Scholar 

  • Wang C, Lloyd E, Soffa M (1985) Feedback vertex sets and cyclically reducible graphs. J ACM 32:296–313

    Article  MathSciNet  MATH  Google Scholar 

  • Watkins ME (1969) A theorem on Tait colorings with an application to the generalized Petersen graphs. J Comb Theory 6:152–164

  • Yehuda B, Geiger D, Naor J, Roth RM (1994) Approximation algorithms for the vertex feedback set problem with applications to constraint satisfaction and Bayesian inference. In: Proceedings of the 5th annual ACM-SIAM symposium on discrete algorithms, pp 344–354

  • Zaker M (2012) On dynamic monopolies of graphs with general thresholds. Discret Math 312:1136–1143

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

C.-Y. Chiang partially supported by NSC under Grant NSC97-2628-M-008-018-MY3. W.-T. Huang partially supported by NSC under Grant NSC100-2115-M-008-007-MY2. H.-G. Yeh partially supported by NSC under Grant NSC102-2115-M-008-011-MY2. A preliminary version of this paper can be downloaded from arXiv:1112.1313v1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Gwa Yeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiang, CY., Huang, WT. & Yeh, HG. Dynamic monopolies and feedback vertex sets in cycle permutation graphs, generalized Petersen graphs and torus cordalis. J Comb Optim 31, 815–832 (2016). https://doi.org/10.1007/s10878-014-9790-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-014-9790-5

Keywords

Navigation