Skip to main content
Log in

An improved approximation algorithm for the shortest link scheduling in wireless networks under SINR and hypergraph models

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

Link scheduling is a fundamental problem in wireless ad hoc and sensor networks. In this paper, we focus on the shortest link scheduling (SLS) under Signal-to-Interference-plus-Noise-Ratio and hypergraph models, and propose an approximation algorithm \(SLS_{pc}\) (A link scheduling algorithm with oblivious power assignment for the shortest link scheduling) with oblivious power assignment for better performance than GOW* proposed by Blough et al. [IEEE/ACM Trans Netw 18(6):1701–1712, 2010]. For the average scheduling length of \(SLS_{pc}\) is 1 / m of GOW*, where \(m=\lfloor \varDelta _{max}\cdot p \rfloor \) is the expected number of the links in the set V returned by the algorithm HyperMaxLS (Maximal links schedule under hypergraph model) and \(0<p<1\) is the constant. In the worst, ideal and average cases, the ratios of time complexity of our algorithm \(SLS_{pc}\) to that of GOW* are \(O(\varDelta _{max}/\overline{k})\), \(O(1/(\overline{k}\cdot \varDelta _{max}))\) and \(O(\varDelta _{max}/(\overline{k}\cdot m))\), respectively. Where \(\overline{k}\) (\(1<\overline{k}<\varDelta _{max}\)) is a constant called the SNR diversity of an instance G.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Afek Y, Alon N, Barad O, Hornstein E, Barkai N, Bar-Joseph Z (2011) A biological solution to a fundamental distributed computing problem. Science 331(6014):183–185

    Article  MathSciNet  MATH  Google Scholar 

  • Blough DM, Resta G, Santi P (2010) Approximation algorithms for wireless link scheduling with SINR-based interference. IEEE/ACM Trans Netw 18(6):1701–1712

    Article  Google Scholar 

  • Cai Z, Duan Y, Bourgeios A (2015) Delay efficient opportunistic routing in asynchronous multi-channel cognitive radio networks. J Comb Optim 29(4):815–835

    Article  MathSciNet  MATH  Google Scholar 

  • Chaporkar P, Kar K, Luo X, Sarkar S (2008) Throughput and fairness guarantees through maximal scheduling in wireless networks. IEEE Trans Inf Theory 54(2):572–594

    Article  MathSciNet  MATH  Google Scholar 

  • Chaorkar A, Proutiere P (2013) Optimal distributed scheduling in wireless networks under SINR interference model. arXiv:1305.038 [cs.IT]

  • Cheng S, Cai Z, Li J, et al. (2015) Drawing dominant dataset from big sensory data in wireless sensor networks. In: Proceedings of the IEEE INFOCOM 2015

  • Dimakis A, Walrand J (2006) Sufficient conditions for stability of longest queue first scheduling: second order properties using fluid limits. Adv Appl Probab 38(2):505–521

    Article  MathSciNet  MATH  Google Scholar 

  • ElBatt T, Ephremides A (2004) Joint scheduling and power control for wireless ad hoc networks. IEEE Trans Wireless Commun 3(1):74–85

    Article  Google Scholar 

  • Gao J, Li J, Cai Z, Gao H (2015) Composite event coverage in wireless sensor networks with heterogeneous sensors. In: Proceedings of the IEEE INFOCOM 2015

  • Goussevskaia O, Oswald YV, Wattenhofer R (2007) Complexity in geometric SINR. Proc. ACM MobiHoc 2007:100–109

    Google Scholar 

  • Goussevskaia O, Wattenhofer R, Hallorsson MM, Welzl E (2009) Capacity of arbitrary wireless networks. Proc. IEEE INFOCOM 2009:1872–1880

    Google Scholar 

  • Guo L, Li Y, Cai Z (2014) Minimum-latency aggregation scheduing in wireless sensor network. J Comb Optim. doi:10.1007/s10878-014-9748-7

  • Gupta P, Kumar PR (2000) The capacity of wireless networks. IEEE Trans Inf Theory 46(2):388–404

    Article  MathSciNet  MATH  Google Scholar 

  • Halldórsson MM, Mitra P (2011) Nearly optimal bounds for distributed wireless scheduleing in the SINR model. Proc. ICALP 2011:625–636

    MATH  Google Scholar 

  • Hajek B, Sasaki G (1988) Link scheduling in ploynomial time. IEEE Trans Inf Theory 34(5):910–917

    Article  MathSciNet  MATH  Google Scholar 

  • He Z, Cai Z, Cheng S, Wang X (2014) Approximate aggregation for tracking quantiles in wireless sensor networks. In: Proceedings of the COCOA 2014. LNCS 8881, pp 161–172

  • Ji S, Uluagac A, Beyah R, Cai Z (2013) Practical unicast and convergecast scheduling schemes for cognitive radio networks. J Comb Optim 26(1):161–177

    Article  MathSciNet  MATH  Google Scholar 

  • Kesselheim T (2011) A constant-factor approximation for wireless capacity maximization with power control in the SINR model. Proc. SODA 2011:1549–1559

    MathSciNet  Google Scholar 

  • Kozat UC, Koutsopoulos I (2006) Cross-layer desgin for power efficiency and Qos provisioning in multi-hop wireless networks. IEEE Trans Wireless Commun 5(11):3306–3315

    Article  Google Scholar 

  • Kompella S, Wieselthier JE, Ephremides A, Sherali HD (2010) On optimal SINR-based scheduling in multihop wireless networks. IEEE/ACM Trans Netw 18(6):1713–1724

    Article  Google Scholar 

  • Li D, Zhu Q, Du H, Li J (2014) An improved distributed data aggregation scheduling in wireless sensor networks. J Comb Optim 27(2):221–240

    Article  MathSciNet  MATH  Google Scholar 

  • Li Q, Kim G, Negi R (2008) Maximal scheduling in a hypergraph model for wireless networks. Proc IEEE ICC 2008:3853–3857

    Google Scholar 

  • Li Q, Negi R (2012) Maximal scheduling in wireless ad hoc networks with hypergraph interference models. IEEE Trans Veh Technol 61(1):297–310

    Article  Google Scholar 

  • Nelson R, Kleinrock L (1985) Spatial-TDMA: a collison-free multihop channel access protocol. IEEE Trans Commun 33(9):934–944

    Article  MathSciNet  Google Scholar 

  • Pei G, Kumar A, Vullikanti S (2012) Distributed algorithms for maximum link scheduling under the physical interference model. Proc DISC 2012:407–408

    MathSciNet  MATH  Google Scholar 

  • Pei G, Anil Kumar VS (2012) Efficient algorithms for maximum link scheduling in distributed computing models with SINR contraints. arXiv:1208.0811v2[cs.DC]16, Nov (2012)

  • Sarkar S, Sivarajan KN (1998) Hypergraph models for cellular mobile communication systems. IEEE Trans Veh Technol 47(2):460–471

    Article  Google Scholar 

  • Schmidt S, Wattenhofer R (2006) Algorithmic models for sensor networks. In: Proceedings of the IEEE IPDPS 2006

  • Sharma G, Mazumdar R, Shroff N (2006) On the complexity of scheduling in wireless networks. Proc ACM MobiCom 2006:227–238

    Google Scholar 

  • Wan P, Xu X, Frieder O (2010) Shortest link scheduling with power control under physical interference model. Proc IEEE MSN 2010:74–78

    Google Scholar 

  • Wan, P, Wang, L, Ma, C, Wang, Z, Xu, B, L, M (2013) Maximizing wireless network capacity with linear power: breaking the logarithmic barrier. In: Proceedings of the IEEE INFoCOM 2013, pp 135–139

Download references

Acknowledgments

The work was partially supported by National Natural Science Foundation of China for contract 61373027, Natural Science Foundation of Shandong Province for contract ZR2012FM023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiguo Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Yu, J., Yu, D. et al. An improved approximation algorithm for the shortest link scheduling in wireless networks under SINR and hypergraph models. J Comb Optim 32, 1052–1067 (2016). https://doi.org/10.1007/s10878-015-9908-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-015-9908-4

Keywords

Navigation