Skip to main content
Log in

A lower bound for the adaptive two-echelon capacitated vehicle routing problem

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

Adaptive two-echelon capacitated vehicle routing problem (A2E-CVRP) proposed in this paper is a variant of the classical 2E-CVRP. Comparing to 2E-CVRP, A2E-CVRP has multiple depots and allows the vehicles to serve customers directly from the depots. Hence, it has more efficient solution and adapt to real-world environment. This paper gives a mathematical formulation for A2E-CVRP and derives a lower bound for it. The lower bound is used for deriving an upper bound subsequently, which is also an approximate solution of A2E-CVRP. Computational results on benchmark instances show that the A2E-CVRP outperforms the classical 2E-CVRP in the costs of routes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baldacci R, Mingozzi A (2009) A unified exact method for solving different classes of vehicle routing problems. Math Progr Ser A 120:347–380

    Article  MathSciNet  MATH  Google Scholar 

  • Baldacci R, Christofideds N, Mingozzi A (2008) An exact algorithm for the vehicle routing problem based on the set partitioning formulation with additional cuts. Math Progr Ser A 115:351–385

    Article  MathSciNet  MATH  Google Scholar 

  • Baldacci R, Mingozzi A, Roberti R (2011) New route relaxation and pricing strategies for the vehicle routing problem. Oper Res 59:1269–1283

    Article  MathSciNet  MATH  Google Scholar 

  • Baldacci R, Mingozzi A, Roberti R, Calvo R (2013) An exact algorithm for the two-echelon capacitated vehicle routing problem. Oper Res 61:298–314

    Article  MathSciNet  MATH  Google Scholar 

  • Christofideds N, Mingozzi A, Toth P (1981) State-space relaxation procedures for the computation of bounds to routing problems. Networks 11:145–16

    Article  MathSciNet  MATH  Google Scholar 

  • CPLEX (2012) Cplex 12.5 callable library. IBM ILOG

  • Dantzig G, Ramser J (1959) The truck dispatching problem. Manag Sci 6:80–91

    Article  MathSciNet  MATH  Google Scholar 

  • Das A (2011) Approximation schemes for euclidean vehicle routing problems. PhD thesis, Dissertation, Brown University, Providence, RI

  • Feliu J, Perboli G, Tadei R, Vigo D (2007) The two-echelon capacitated vehicle routing problem. Technical report DEIS ORINGCE 2007/2(R). Department of Electronics, Computer Science and Systems, University of Bologna, Bologna

    Google Scholar 

  • Ghannadpour S, Noori S, Tavakkoli-Moghaddam R (2014) A multi-objective vehicle routing and scheduling problem with uncertainty in customers’ request and priority. J Comb Optim 28:414–446

    Article  MathSciNet  MATH  Google Scholar 

  • Jepsen M, Spoorendonk S, Ropke S (2013) A branch-and-cut algorithm for the symmetric two-echelon capacitated vehicle routing problem. Transp Sci 47:23–37

    Article  Google Scholar 

  • Li J, Li Y, Pardalos P (2014) Multi-depot vehicle routing problem with time windows under shared depot resources. J Comb Optim. doi:10.1007/s10878-014-9767-4

  • Toth P, Vigo D (2001) The vehicle routing problem. Society for Industrial and Applied Mathematics, Philadelphia

    MATH  Google Scholar 

  • Wøhlk S (2008) An approximation algorithm for the capacitated arc routing problem. Open Oper Res J 2:8–12

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang T, Chaovalitwongse W, Zhang Y (2014) Integrated ant colony and tabu search approach for time dependent vehicle routing problems with simultaneous pickup and delivery. J Comb Optim 28:288–309

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China with grant no. 11371004, and Shenzhen Overseas High Level Talent Innovation and Entrepreneurship Special Fund with grant no. KQCX20150326141251370.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hejiao Huang.

Appendices

Appendix 1: Proofs of Theorem 1 and Corollary 1

Consider an optimal solution \((\bar{x}, \bar{y}, \bar{q})\) of cost \(\bar{z}(F)\), and we define

$$\begin{aligned} J_{k}= & {} \{l\in R_{k}:\bar{x}_{kl}=1\},\quad k\in N_{S}\cup N_{D}\\ L_{k}= & {} \{r\in M_{d}:\bar{y}_{dr}=1\}, \quad d\in N_{D}\\ \bar{V}_{k}= & {} \{i\in R_{kl}:l\in J_{k}\},\quad k\in N_{S}\cup N_{D}\\ \bar{N}_{S}= & {} \{i\in R_{r}:r \in L_{k}:k\in N_{D}\\ \bar{N}_{D}= & {} \left\{ d \in N_{D}:\sum \limits _{l\in R_{d}}\bar{x}_{dl}\geqslant 1\right\} \end{aligned}$$

Let \(z(RF(\beta ,\lambda ,\mu ))\) be the optimal cost, of a valid group of \((\beta ,\lambda ,\mu )\). So, from (11), we have

$$\begin{aligned} \tilde{c}_{kl}=c_{kl}-\sum \limits _{i\in N_{c}}\alpha _{ikl}\cdot (\beta _{ik}+\lambda _{i})-\mu _{k}\geqslant 0, \quad k\in N_{S}\cup N_{D},\quad l\in R_{k} \end{aligned}$$

Then

$$\begin{aligned} \sum \limits _{k\in \bar{N}_{S}\cup \bar{N}_{D}}\sum \limits _{l\in J_{k}}\tilde{c}_{kl}=\sum \limits _{k\in \bar{N}_{S}\cup \bar{N}_{D}}\sum \limits _{l\in J_{k}}c_{kl}-\sum \limits _{k\in \bar{N}_{S}\cup \bar{N}_{D}}\sum \limits _{l\in J_{k}}\sum \limits _{i\in N_{c}}\alpha _{ikl}\cdot (\beta _{ik}+\lambda _{i})-\sum \limits _{k\in \bar{N}_{S}\cup \bar{N}_{D}}\sum \limits _{l\in J_{k}}\mu _{k} \end{aligned}$$
(30)

and obviously,

$$\begin{aligned}&\sum \limits _{l\in J_{k}}\sum \limits _{i\in N_{c}}\alpha _{ikl}\cdot (\beta _{ik}+\lambda _{i})=\sum \limits _{i\in \bar{V}_{k}}(\beta _{ik}+\lambda _{i}), k\in \bar{N}_{S}\cup \bar{N}_{D} \end{aligned}$$
(31)
$$\begin{aligned}&\sum \limits _{k\in \bar{N}_{S}\cup \bar{N}_{D}}\sum \limits _{l\in J_{k}}\mu _{k} =\sum \limits _{k\in \bar{N}_{S}\cup \bar{N}_{D}}|J_{k}|\cdot \mu _{k} \geqslant \sum \limits _{k\in \bar{N}_{S}\cup \bar{N}_{D}}m^{2}_{k}\cdot \mu _{k} \end{aligned}$$
(32)

move (31), (32) into (30), we get

$$\begin{aligned}&\sum \limits _{k\in \bar{N}_{S}\cup \bar{N}_{D}}\sum \limits _{l\in J_{k}}\tilde{c}_{kl}=\sum \limits _{k\in \bar{N}_{S}\cup \bar{N}_{D}}\sum \limits _{l\in J_{k}}c_{kl}+\sum \limits _{d\in N_{d}}\sum \limits _{r\in M_{d}}y_{dr}\cdot g_{dr}\nonumber \\&\quad -\,\left( \sum \limits _{d\in N_{d}}\sum \limits _{r\in M_{d}}y_{dr}\cdot g_{dr}+\sum \limits _{k\in \bar{N}_{S}\cup \bar{N}_{D}}\sum \limits _{i\in \bar{V}_{k}}(\beta _{ik} +\lambda _{i})+\sum \limits _{k\in \bar{N}_{S}\cup \bar{N}_{D}}m^{2}_{k}\cdot \mu _{k}\right) \end{aligned}$$
(33)

In (33), the left side \(\geqslant 0\), the first and the second terms of the right side \(=\,\bar{z}(F)\), and the remaining terms of the right side = the cost \(\tilde{z}(RF(\alpha ,\beta ,\gamma ))\) of feasible solution of

$$\begin{aligned} \tilde{y}= & {} \bar{y}\\ \xi _{ik}= & {} 1, \; i\in \bar{V}_{k},\; k\in \bar{N}_{S}\cup \bar{N}_{D};\; 0, \; otherwise\\ \tilde{q}= & {} \bar{q} \end{aligned}$$

so,

$$\begin{aligned} \sum _{k\in \bar{N}_{S}\cup \bar{N}_{D}}\sum _{l\in J_{k}}\tilde{c}_{kl}\leqslant \bar{z}(F)-z(RF(\beta ,\lambda ,\mu )) \end{aligned}$$
(34)

and

$$\begin{aligned} \bar{z}(F)-z(RF(\beta ,\lambda ,\mu ))\geqslant 0 \end{aligned}$$

It is obvious that corollary 1 hold by (34).

Appendix 2: Proof of Theorem 2

$$\begin{aligned} z(dual\;LF)= & {} max\sum \limits _{i\in N_{c}}u_{i}+\sum \limits _{k\in N_{S}\cup N_{D}}m^{2}_{k}\cdot \upsilon _{k}+\sum \limits _{k\in N_{S}\cup N_{D}}B^{2}_{k}\cdot \sigma _{k}+\sum \limits _{d\in N_{D}}m^{1}_{d}\cdot \eta _{d}\nonumber \\&+\,\sum \limits _{d\in N_{d}}\sum \limits _{d\in N_{D}}\sum \limits _{r\in M_{d}}\vartheta _{dr} \end{aligned}$$

s.t.

$$\begin{aligned}&\sum \limits _{i\in R_{sl}}\mu _{i}+\upsilon _{s}+w_{sl}\cdot \sigma _{s}-\omega _{sl}\cdot \alpha \leqslant c_{sl},\quad s\in N_{s},l\in R_{s} \end{aligned}$$
(35)
$$\begin{aligned}&\sum \limits _{i\in R_{dl}}\mu _{i}+\upsilon _{d}+\omega _{d}l\cdot \sigma _{d}\leqslant c_dl, \quad d\in N_{D},l\in R_{k} \end{aligned}$$
(36)
$$\begin{aligned}&\eta _{d}-Q_{1}\cdot \omega _{dr}+\vartheta _{dr}\leqslant g_{dr}, \quad d\in N_{d},r\in M_{d} \end{aligned}$$
(37)
$$\begin{aligned}&\alpha _{i}+\omega _{dr}\leqslant 0, \quad i\in N_{s},d\in N_{d},r\in M_{id} \end{aligned}$$
(38)
$$\begin{aligned}&\mu \in \mathbb {R}, \upsilon _{k},\sigma _{k},\alpha _{k},\eta _{k}, \omega _{kr},\vartheta _{kr}\leqslant 0 . \end{aligned}$$
(39)

1.1 Construct \((\beta ,\lambda ,\mu )\) satisfying (11)

Firstly, let

$$\begin{aligned} \mu _{k}= & {} \upsilon ^{*}_{k},\quad k\in N_{S}\cup N_{D}\\ \beta _{is}= & {} \mu ^{*}_{i}+q_{i}(\sigma ^{*}_{s}-\alpha ^{*}_{s}), \quad i\in N_{c},s\in N_{S}\\ \beta _{id}= & {} u^{*}_{i}+q_{i}\cdot \sigma _{d}^{*},\quad i\in N_{c},d\in N_{D}\\ \lambda _{i}= & {} 0,\quad i\in N_{c} \end{aligned}$$

By the definition of \(a_{ikl}\), it’s obvious that

$$\begin{aligned} \mathop {\sum }\limits _{i \in {N_c}} {a_{ikl}} \cdot {q_i} = {w_{kl}},k \in {N_S}\mathop \cup {N_D},\quad l \in {{\mathscr {R}}_k} \end{aligned}$$

then, we have

$$\begin{aligned} \mathop {\sum }\limits _{i \in {N_c}} {a_{ikl}} \cdot {\beta _{\mathrm{{ik}}}} = \mathop {\sum }\limits _{i \in {N_c}} {a_{ikl}} \cdot u_\mathrm{{i}}^* + {w_{kl}} \cdot \sigma _\mathrm{{k}}^* - {w_{kl}} \cdot \alpha _\mathrm{{k}}^*,\quad s \in {N_S},l \in {{\mathscr {R}}_k} \end{aligned}$$

and

$$\begin{aligned}&\mathop {\sum }\limits _{i \in {N_c}} {a_{idl}} \cdot {\beta _{\mathrm{{id}}}} = \mathop {\sum }\limits _{i \in {N_c}} {a_{idl}} \cdot u_\mathrm{{i}}^* + {w_{dl}} \cdot \sigma _\mathrm{{d}}^*,\;\;\;\;d \in {N_D},l \in {{\mathscr {R}}_d}\\&\mathop {\sum }\limits _{i \in {N_c}} {a_{ikl}} \cdot {\beta _{\mathrm{{ik}}}} \le {c_{kl}} - v_\mathrm{{k}}^*,\;\;\;\;k \in {N_S}\mathop \cup \nolimits ^ {N_D},l \in {{\mathscr {R}}_k} \end{aligned}$$

1.2 Prove \(max_{(\beta ,\lambda ,\mu )}\geqslant z(RF(\beta ,\lambda ,\mu ))\geqslant z(dual LF)\)

For \(\mu \) and \(\upsilon \)

Let \((\xi ^{*},y^{*},q^{*})\) be the optimal solution of \(z(RF(\beta ,\lambda ,\mu ))\). By definition \((\beta ,\lambda ,\mu )\), we have

$$\begin{aligned} z\left( {RF\left( {\beta ,\lambda ,\mu } \right) } \right)= & {} \mathop {\sum }\limits _{s \in {N_s}} \mathop {\sum }\limits _{i \in {N_c}} (u_\mathrm{{i}}^* + {q_\mathrm{{i}}} \cdot \left( {\sigma _\mathrm{{s}}^* - \alpha _\mathrm{{s}}^*} \right) ) \cdot \xi _{is}^* + \mathop {\sum }\limits _{d \in {N_D}} \mathop {\sum }\limits _{i \in {N_c}} (u_\mathrm{{i}}^* + {q_\mathrm{{i}}} \cdot \sigma _\mathrm{{d}}^*) \cdot \xi _{id}^*\\&+\, \mathop {\sum }\limits _{d \in {N_D}} \mathop {\sum }\limits _{r \in {{\mathscr {M}}_d}} y_{dr}^* \cdot {g_{dr}} + \mathop {\sum }\limits _{i \in {N_c}} {\lambda _i} + \mathop {\sum }\limits _{k \in {N_s}\mathop \cup \nolimits ^ {N_D}} v_\mathrm{{k}}^* \cdot m_k^2\\= & {} \mathop {\sum }\limits _{i \in {N_c}} u_\mathrm{{i}}^* \cdot \left( \mathop {\sum }\limits _{s \in {N_s}} \xi _{is}^*\right) \mathrm{{ + }}\mathop {\sum }\limits _{s \in {N_s}} \sigma _\mathrm{{s}}^* \cdot \left( \mathop {\sum }\limits _{i \in {N_c}} {q_\mathrm{{i}}}\xi _{is}^*\right) \\&-\, \mathop {\sum }\limits _{s \in {N_s}} \alpha _\mathrm{{s}}^* \cdot \left( \mathop {\sum }\limits _{i \in {N_c}} {q_\mathrm{{i}}}\xi _{is}^*\right) \\&+\, \mathop {\sum }\limits _{i \in {N_c}} u_\mathrm{{i}}^* \cdot \left( \mathop {\sum }\limits _{d \in {N_D}} \xi _{id}^*\right) + \mathop {\sum }\limits _{d \in {N_D}} \sigma _\mathrm{{d}}^* \cdot \left( \mathop {\sum }\limits _{i \in {N_c}} {q_\mathrm{{i}}}\xi _{id}^*\right) \\&+\, \mathop {\sum }\limits _{d \in {N_D}} \mathop {\sum }\limits _{r \in {{\mathscr {M}}_d}} y_{dr}^* \cdot {g_{dr}} + \mathop {\sum }\limits _{k \in {N_s}\mathop \cup {N_D}} v_\mathrm{{k}}^* \cdot m_k^2 \end{aligned}$$

By (12), we have

$$\begin{aligned} \mathop {\sum }\limits _{i \in {N_c}} u_\mathrm{{i}}^* \cdot \left( \mathop {\sum }\limits _{k \in {N_s}\mathop \cup {N_D}} \xi _{ik}^*\right) = \mathop {\sum }\limits _{i \in {N_c}} u_\mathrm{{i}}^* \end{aligned}$$

For \(\eta \) and \(\vartheta \)

By (37), we have

$$\begin{aligned} \mathop {\sum }\limits _{d \in {N_D}} \mathop {\sum }\limits _{r \in {{\mathscr {M}}_d}} {g_{dr}} \cdot {y^*}_{dr}\geqslant & {} \mathop {\sum }\limits _{d \in {N_D}} \mathop {\sum }\limits _{r \in {{\mathscr {M}}_d}} {\eta ^*}_d \cdot {y^*}_{dr} - \mathop {\sum }\limits _{d \in {N_D}} \mathop {\sum }\limits _{r \in {{\mathscr {M}}_d}} {Q_1} \cdot {\omega ^*}_{dr} \cdot {y^*}_{dr} \\&+ \,\mathop {\sum }\limits _{d \in {N_D}} \mathop {\sum }\limits _{r \in {{\mathscr {M}}_d}} {\vartheta ^*}_{dr} \cdot {y^*}_{dr} \end{aligned}$$

Then, because \(\eta ^*_{d}\leqslant 0\), and by (13), we have

$$\begin{aligned} \mathop {\sum }\limits _{d \in {N_D}} \left( {\eta ^*}_d \cdot \mathop {\sum }\limits _{r \in {{\mathscr {M}}_d}} {y^*}_{dr}\right) \ge \mathop {\sum }\limits _{d \in {N_D}} {\eta ^*}_d \cdot m_d^1 \end{aligned}$$

and because \(\vartheta ^*_d\leqslant 0\), we have

$$\begin{aligned} \mathop {\sum }\limits _{r \in {{\mathscr {M}}_d}} {\vartheta ^*}_d \cdot {y^*}_{dr} \geqslant \mathop {\sum }\limits _{r \in {{\mathscr {M}}_d}} {\vartheta ^*}_d \end{aligned}$$

For \(\sigma \)

From above, we have

$$\begin{aligned} z \left( {RF\left( {\beta ,\lambda ,\mu } \right) } \right)\geqslant & {} \mathop {\sum }\limits _{i \in {N_c}} u_\mathrm{{i}}^* + \mathop {\sum }\limits _{s \in {N_s}} \sigma _\mathrm{{s}}^* \cdot \left( \mathop {\sum }\limits _{i \in {N_c}} {q_\mathrm{{i}}}\xi _{is}^*\right) -\mathop {\sum }\limits _{s \in {N_S}} \alpha _\mathrm{{s}}^* \cdot \left( \mathop {\sum }\limits _{i \in {N_c}} {q_\mathrm{{i}}}\xi _{is}^*\right) \\&+\, \mathop {\sum }\limits _{i \in {N_c}} u_\mathrm{{i}}^* \cdot \left( \mathop {\sum }\limits _{d \in {N_D}} \xi _{id}^*\right) + \mathop {\sum }\limits _{d \in {N_D}} \sigma _\mathrm{{d}}^* \cdot \left( \mathop {\sum }\limits _{i \in {N_c}} {q_\mathrm{{i}}}\xi _{id}^*\right) + \mathop {\sum }\limits _{d \in {N_D}} {\eta ^*}_d \cdot m_d^1\\&-\, \mathop {\sum }\limits _{d \in {N_D}} \mathop {\sum }\limits _{r \in {{\mathscr {M}}_d}} {Q_1} \cdot {\omega ^*}_{dr} \cdot {y^*}_{dr} + \mathop {\sum }\limits _{d \in {N_D}} \mathop {\sum }\limits _{r \in {{\mathscr {M}}_d}} {\vartheta ^*}_{dr} \!+\! \mathop {\sum }\limits _{k \in {N_S}\mathop \cup {N_D}} v_\mathrm{{k}}^* \cdot m_k^2 \end{aligned}$$

Because \(\sigma ^*_d\leqslant 0\) and by (13), we have:

$$\begin{aligned} \mathop {\sum }\limits _{k \in {N_S}\mathop \cup {N_D}} \sigma _\mathrm{{k}}^* \cdot \left( \mathop {\sum }\limits _{i \in {N_c}} {q_\mathrm{{i}}}\xi _{ik}^*\right) \ge \mathop {\sum }\limits _{k \in {N_S}\mathop \cup {N_D}} \sigma _\mathrm{{k}}^* \cdot B_k^2 \end{aligned}$$

For \(\alpha \) and \(\omega \)

By (14), we have

$$\begin{aligned} \mathop {\sum }\limits _{s \in {N_s}} \alpha _\mathrm{{s}}^* \cdot \left( \mathop {\sum }\limits _{i \in {N_c}} {q_\mathrm{{i}}}\xi _{is}^*\right)= & {} \mathop {\sum }\limits _{s \in {N_s}} \alpha _\mathrm{{s}}^* \cdot \left( {\mathop {\sum }\limits _{d \in {N_D}} \mathop {\sum }\limits _{r \in {{\mathscr {M}}_{sd}}} q_{srd}^*} \right) \\= & {} \mathop {\sum }\limits _{s \in {N_s}} \mathop {\sum }\limits _{d \in {N_D}} \mathop {\sum }\limits _{r \in {{\mathscr {M}}_{sd}}} \alpha _\mathrm{{s}}^* \cdot q_{srd}^* \\= & {} \mathop {\sum }\limits _{i \in {N_s}} \mathop {\sum }\limits _{d \in {N_D}} \mathop {\sum }\limits _{r \in {{\mathscr {M}}_{id}}} \alpha _\mathrm{{i}}^* \cdot q_{srd}^* \end{aligned}$$

Because \(\omega ^*_{kr}\leqslant 0\), and by (6), we have:

$$\begin{aligned} \mathop {\sum }\limits _{d \in {N_D}} \mathop {\sum }\limits _{r \in {{\mathscr {M}}_d}} ( - {\omega ^*}_{dr}{y^*}_{dr}{Q_1})\geqslant & {} \mathop {\sum }\limits _{\mathrm{{d}} \in {N_D}} \mathop {\sum }\limits _{r \in {{\mathscr {M}}_d}} \left( - {\omega ^*}_{dr}\mathop {\sum }\limits _{i \in {R_{dr}}} q_{srd}^*\right) \\= & {} \mathop {\sum }\limits _{d \in {N_D}} \mathop {\sum }\limits _{r \in {{\mathscr {M}}_d}} \mathop {\sum }\limits _{i \in {R_{dr}}} ( - {\omega ^*}_{dr} \cdot q_{srd}^*)\\= & {} \mathop {\sum }\limits _{d \in {N_D}} \mathop {\sum }\limits _{r \in {{\mathscr {M}}_{id}}} \mathop {\sum }\limits _{i \in {N_S}} ( - {\omega ^*}_{dr} \cdot q_{srd}^*) \\= & {} \mathop {\sum }\limits _{i \in {N_S}} \mathop {\sum }\limits _{k \in {N_D}} \mathop {\sum }\limits _{r \in {{\mathscr {M}}_{ik}}} ( - {\omega ^*}_{kr} \cdot q_{jrk}^*) \end{aligned}$$

and because (38), we have

$$\begin{aligned}&- \mathop {\sum }\limits _{k \in {N_s}} \alpha _\mathrm{{k}}^* \cdot \left( \mathop {\sum }\limits _{i \in {N_c}} {q_\mathrm{{i}}}\xi _{ik}^*\right) - \mathop {\sum }\limits _{k \in {N_D}} \mathop {\sum }\limits _{r \in {{\mathscr {M}}_k}} {Q_1} \cdot {\omega ^*}_{kr} \cdot {y^*}_{kr}\\&\quad \geqslant \, - \mathop {\sum }\limits _{i \in {N_s}} \mathop {\sum }\limits _{k \in {N_D}} \mathop {\sum }\limits _{r \in {{\mathscr {M}}_{ik}}} \alpha _\mathrm{{i}}^* \cdot q_{irk}^*\\&\qquad +\, \mathop {\sum }\limits _{i \in {N_s}} \mathop {\sum }\limits _{k \in {N_D}} \mathop {\sum }\limits _{r \in {{\mathscr {M}}_{ik}}} ( - {\omega ^*}_{kr} \cdot q_{jrk}^*)\\&\quad = \, - \mathop {\sum }\limits _{i \in {N_s}} \mathop {\sum }\limits _{k \in {N_D}} \mathop {\sum }\limits _{r \in {{\mathscr {M}}_{ik}}} (\alpha _\mathrm{{i}}^* + {\omega ^*}_{kr}) \cdot q_{jrk}^*\\&\quad \geqslant \,0 \end{aligned}$$

Finally, by all above, we get \(z(RF(\beta ,\lambda ,\mu ))\geqslant z(dual LF)\)

Appendix 3: Proofs of Theorem 3 and Corollary 2

We define the optimum solution of \({\phi _{krw}: z_i^*(d,r,w), \; i \in N_C}\). Let \(V\left( {d,r,w} \right) = \{ i \in N_C: z_i^*(d,r,w) > 0\}\) be the set of supplied customers, and \(\xi _{krw} = 1\) if and only if route \(r \in {{\mathscr {M}}_d}\) delivers demand w in the optimum solution.

Step 1: Prove \(\zeta _{krw}\) defined by \((\bar{\xi }, \bar{y}, \bar{q})\) is a feasible solution

Let \((\bar{\xi }, \bar{y}, \bar{q})\) be an optimum solution of \(z(RF(\beta , \lambda , \mu ) )\), and we define \(\overline{\mathscr {M}}_d = \{r \in \mathscr {M}_d: \bar{y}_{dr} = 1\}, \; \overline{V}_d = \{i \in N_C: \bar{\xi }_{dr} = 1\}\). For any \(r \in {{\mathscr {M}}_d}\), define \(\bar{w}_{dr} = \sum _{s \in R_{dr}} \bar{q}_{srd}\). For all \(\bar{\zeta }_{drw}\), set \(\bar{\zeta }_{drw} = 1\), when \(r \in {\overline{{\mathscr {M}}}_d}\) and \(w = \bar{w}_{dr}\); set \(\bar{\zeta }_{drw} = 0\), when \(r \in {\overline{{\mathscr {M}}}_d}\) but \(w \ne \bar{w}_{dr}\); set \(\bar{\zeta }_{drw} = 0\), when \(d \in {{\mathscr {M}}_d \setminus \overline{{\mathscr {M}}}_d}\). For \(\overline{N}_D = \{d \in N_D: \sum _{i \in N_C} q_i \cdot \bar{\xi }_{id} > 0 \}\), we define \(\bar{w}_d = \sum _{i \in N_C} q_i \cdot \bar{\xi }_{id}\). For all \(\bar{\zeta }_{dw}\), set \(\bar{\zeta }_{dw} = 1, \; when \; d \in {\overline{N}_D}\) and \(w \ne \bar{w}_d\); set \(\bar{\zeta }_{dw} = 0, \; when \; d \in {N_D \setminus \overline{N}_D}\).

Its’ obvious that \(\zeta _{drw}\) satisfies (18), now we prove that \(\bar{\zeta }_{drw}\) satisfies (17). By (14), we have

$$\begin{aligned} \sum _{d \in {N_D}} \sum _{i \in {N_c}} {\bar{\xi }_{id}} \cdot {q_i} + \sum \limits _{s \in {N_S}} \sum _{d \in {N_D}} \sum _{r \in {{\mathscr {M}}_{sk}}} {\bar{q}_{srd}} = \sum _{k \in {N_S} \cup {N_D}} \sum _{i \in {N_c}} {\bar{\xi }_{ik}} \cdot q_i . \end{aligned}$$

By \({\bar{q}_{srd}}, \; when \; r \in \mathscr {M}_d \setminus \overline{\mathscr {M}}_d, \, s \in N_S\), \({\bar{q}_{srd}} = 0, \; when \; r \in \overline{\mathscr {M}}_d, \; s \in N_S \setminus R_{dr}\), and the definition of \(\bar{w}_{dr}\) and \(\bar{\zeta }_{drw}\), we have

$$\begin{aligned} \sum _{s \in {N_S}} \sum _{d \in {N_D}} \sum _{r \in {{\mathscr {M}}_{sd}}} {\bar{q}_{srd}} = \sum _{\mathrm{{d}} \in {N_D}} \sum _{r \in \overline{\mathscr {M}}_d} \sum _{s \in {R_{dr}}} {\bar{q}_{srd}} = \sum _{d \in {N_D}} \mathop \sum _{r \in {{\mathscr {M}}_d}} \sum _{w \in {W_{dr}}} w \cdot {\bar{\zeta }_{drw}} \end{aligned}$$

and

$$\begin{aligned} \sum _{d \in {N_D}} \sum _{w \in {W_d}} w \cdot {\bar{\zeta }_{dw}} = \sum _{d \in {N_D}} \sum _{i \in {N_c}} {\bar{\xi }_{id}} \cdot {q_i}. \end{aligned}$$

By (12), we have

$$\begin{aligned} \sum _{s \in {N_S}} \sum _{i \in {N_c}} {\bar{\xi }_{is}} \cdot {q_i} = \sum _{i \in {N_c}} \left( {q_i} \cdot \sum _{s \in {N_S}} {\bar{\xi }_{is}}\right) \end{aligned}$$

and

$$\begin{aligned} \sum _{k \in {N_S} \cup {N_D}} \sum _{i \in {N_c}} {\bar{\xi }_{ik}} \cdot {q_i} = \sum _{i \in {N_c}} \left( {q_i} \cdot \sum _{k \in {N_S} \cup {N_D}} {\bar{\xi }_{ik}}\right) = \sum _{i \in {N_c}} {q_i} = {q_{tot}}. \end{aligned}$$

From the above 4 equations, we prove \(\bar{\zeta }_{drw}\) satisfies (17).

Step 2: Prove \(\theta _{ikr}\) defined by \((\bar{\xi }, \bar{y}, \bar{q})\) is a feasible solution

For \(i \in N_C\), we define \(\theta _{ikr}\). When \(s \in N_S, \; r \in \mathscr {M}_d \) and \(\mathscr {M}_{sd} = M_{sd}\),

$$\begin{aligned} {\theta _{isrd}} = \left\{ {\begin{array}{ll} 0, &{}\quad if \quad {\bar{\xi }_{is}} = 0\\ \frac{{{\bar{q}_{srd}}}}{{ \sum _{d \in {N_D}} \sum _{r \in {\overline{\mathscr {M}}_{sd}}} {\bar{q}_{srd}}}}, &{} \quad if \quad \bar{\xi }_{is} = 1 \end{array}} \right. \end{aligned}$$

When \(d \in N_D\),

$$\begin{aligned} {\theta _{id}} = \left\{ {\begin{array}{ll} 0, &{}\quad if \quad {\bar{\xi }_{id} = 0}\\ 1, &{}\quad if \quad \bar{\xi }_{id} = 1 \end{array}} \right. \end{aligned}$$

Then, for \(d \in N_D, r \in \overline{\mathscr {M}}_d, \; w = \bar{w}_{dr}\), we define \(\bar{z}_i (r, \bar{w}_{dr}) = \sum _{s \in R_{dr}} \theta _{isrd}\) , and for \(d \in N_D, \; w = \bar{w}_d\), we define \(\bar{z}_i (\bar{w}_{d}) = \theta _{id}\). It’s obvious that \(0 \leqslant z_i \leqslant 1\), now we prove \(\bar{z}_i\) satisfies the constraint \(\sum _{i \in N_C} q_i \cdot z_i = w\).

Part 1

For \(d \in N_D, r \in \overline{\mathscr {M}}_d, \; w = \bar{w}_{dr}\), we have

$$\begin{aligned} \sum _{i \in {N_C}} {q_i} \cdot {\bar{z}_i}\left( {r,{\bar{w}_{dr}}} \right) = \sum _{i \in {N_C}} {q_i} \cdot \sum _{s \in {R_{dr}}} {\theta _{isrd}}. \end{aligned}$$

By the definition of \(\theta _{isrd}\), it is easy to have

$$\begin{aligned} \sum _{i \in {N_C}} {q_i} \cdot \sum _{s \in {R_{dr}}} {\theta _{isrd}}= & {} \sum _{i \in {N_C}} \sum _{s \in {R_{dr}}} {q_i} \cdot {\theta _{isrd}} = \sum _{s \in {R_{dr}}} \sum _{i \in {\overline{V}_s}} {q_i} \cdot {\theta _{isrd}} \\= & {} \sum _{s \in {R_{dr}}} \left( \sum _{i \in {\overline{V}_s}} {q_i}\right) \cdot \frac{{{\bar{q}_{srd}}}}{{\sum _{d \in {N_D}} \sum _{r \in {\overline{\mathscr {M}}_{sd}}} {\bar{q}_{srd}}}}. \end{aligned}$$

Since \(\sum _{d \in {N_D}} \sum _{r \in {\overline{\mathscr {M}}_{sd}}} {\bar{q}_{srd}} = \sum _{i \in {\overline{V}_s}} {q_i}\), we have

$$\begin{aligned} \sum _{s \in {R_{dr}}} \left( \sum _{i \in {\overline{V}_s}} {q_i}\right) \cdot \frac{{{\bar{q}_{srd}}}}{{\sum _{d \in {N_D}} \sum _{r \in {\overline{\mathscr {M}}_{sd}}} {\bar{q}_{srd}}}} = \sum _{s \in {R_{dr}}} {\bar{q}_{srd}} = {\bar{w}_{dr}}. \end{aligned}$$

From the above 3 equations, we get

$$\begin{aligned} \sum _{i \in {N_C}} {q_i} \cdot {\bar{z}_i}\left( {r,{\bar{w}_{dr}}} \right) = {\bar{w}_{dr}}. \end{aligned}$$

Part 2

For \(d \in N_D, \; w = \bar{w}_d\), by the definition of \(\theta _{id}\), it is easy to have

$$\begin{aligned} \sum _{i \in {N_C}} {q_i} \cdot {\bar{z}_i}\left( {r,{\bar{w}_{d}}} \right) = \sum _{i \in {N_C}} {q_i} \cdot {\theta _{id}} = \sum _{i \in {\overline{V}_C}} {q_i} \cdot {\theta _{id}} = {\bar{w}_{d}}. \end{aligned}$$

Step 3: Prove \(z(RF({\beta }, {\lambda }, {\mu })) \geqslant z(\overline{RF}(\bar{\beta }, \bar{\lambda }, \bar{\mu }))\)

By the definition of \(\theta _{isrd}\) and \(\theta _{id}\) , it is easy to know that, when i is served by \(s \in N_S, \bar{\xi }_{is} = \sum _{d \in N_D} \sum _{r \in \overline{\mathscr {M}}_{sk}} \theta _{isrd}\); When i is served by \(d \in N_D, \; \bar{\xi }_{id} = \theta _{id}\). So, we have

$$\begin{aligned} \bar{z}(RF({\beta }, {\lambda }, {\mu }))= & {} \min \sum _{k \in {N_S} \cup {N_D}} \sum _{i \in {N_c}} {\bar{\xi }_{ik}} \cdot {\beta _{ik}} + \sum _{d \in {N_D}} \sum _{r \in {{\mathscr {M}}_d}} {\bar{y}_{dr}} \cdot {g_{dr}} \\&+\, \sum _{i \in {N_c}} {\lambda _i} + \sum _{k \in {N_s} \cup {N_D}} {\mu _k} \cdot m_k^2\\= & {} \min \sum _{s \in {N_S}} \sum _{i \in {N_c}} {\bar{\xi }_{ik}} \cdot {\beta _{is}} + \sum _{d \in {N_D}} \sum _{i \in {N_c}} {\bar{\xi }_{id}} \cdot {\beta _{id}} + \sum _{d \in {N_D}} \sum _{r \in {{\mathscr {M}}_d}} {\bar{y}_{dr}} \cdot {g_{dr}} \\&+\, \sum _{i \in {N_c}} {\lambda _i} + \sum _{k \in {N_s} \cup {N_D}} {\mu _k} \cdot m_k^2\\= & {} \min \sum _{s \in {N_S}} \sum _{i \in {N_c}} \left( {{\sum _{d \in {N_D}} \sum _{r \in {\overline{\mathscr {M}}_{sd}}} {\theta _{srd}}}}\right) \cdot {\beta _{is}} + \sum _{d \in {N_D}} \sum _{r \in {\overline{{\mathscr {M}}}_d}} {g_{dr}} \\&+\, \sum _{d \in {N_D}} \sum _{i \in {N_C}} {\bar{\theta }_{id}} \cdot {\beta _{id}} + \sum _{i \in {N_c}} {\lambda _i} + \sum _{k \in {N_s} \cup {N_D}} {\mu _k} \cdot m_k^2 \end{aligned}$$

It’s obvious that:

$$\begin{aligned} \sum _{s \in {N_s}} \sum _{i \in {N_c}} \left( {\sum \limits _{d \in {N_D}} \sum _{r \in {\overline{\mathscr {M}}_{sd}}} {\theta _{isrd}}} \right) \cdot {\beta _{is}}= & {} \sum _{s \in {N_s}} \sum _{i \in {N_c}} \sum _{d \in {N_D}} \sum _{r \in {\overline{\mathscr {M}}_{sd}}} {\theta _{isrd}} \cdot {\beta _{is}}\\= & {} \sum _{d \in {N_D}} \sum _{i \in {N_c}} \sum _{s \in {N_s}} \sum _{r \in {\overline{\mathscr {M}}_{sd}}} {\theta _{isrd}} \cdot {\beta _{is}}.\\= & {} \mathop \sum _{d \in {N_D}} \sum _{i \in {N_c}} \sum _{r \in {\overline{\mathscr {M}}_d}} \sum _{s \in {R_{dr}}} {\theta _{isrd}} \cdot {\beta _{is}} \\= & {} \sum _{d \in {N_D}} \sum _{r \in {\overline{\mathscr {M}}_d}} \left( \sum _{i \in {N_c}} \sum _{s \in {R_{dr}}} {\theta _{isrd}} \cdot {\beta _{is}}\right) . \end{aligned}$$

By \({\bar{z}_i} (r, \bar{w}_{dr}) = \sum _{s \in {R_{dr}}} {\theta _{isrd}}, \; \bar{z}_i(\bar{w}_d ) = \theta _{id} = \bar{\xi }_{id}\), and the definition of \(\zeta _{drw}\) and \(\zeta _{dw}\), we have

$$\begin{aligned} \sum _{i \in {N_c}} \sum _{s \in {R_{dr}}} {\beta _{is}} \cdot {\theta _{isrd}}\ge & {} \sum _{i \in {N_c}} \left( { {\min }_{s \in {R_{dr}}} {\beta _{is}}} \right) \cdot \left( { \sum _{s \in {R_{dr}}} {\theta _{isrd}}} \right) \\= & {} \sum _{i \in {N_c}} \left( { {\min }_{s \in {R_{dr}}} {\beta _{is}}} \right) \cdot {\bar{z}_i}(r, \bar{w}_{dr}) = {\bar{\phi }_{dr{\bar{w}_{dr}}}} \end{aligned}$$

and

$$\begin{aligned} \sum _{i \in {N_c}} \sum _{s \in {R_{dr}}} {\beta _{id}} \cdot {\theta _{id}} = \sum _{i \in {N_C}} {\bar{z}_i}(\bar{w}_{d}) \cdot \beta _{id} = {\bar{\phi }_{d{\bar{w}_{d}}}}, \end{aligned}$$

so,

$$\begin{aligned} \bar{z}(RF({\beta }, {\lambda }, {\mu })) \geqslant \min \sum _{d \in {N_D}} \sum _{r \in {{\mathscr {M}}_d}} ({\bar{\phi }_{dr{\bar{w}_{dr}}}} + g_{dr})+ {\bar{\phi }_{d{\bar{w}_{d}}}} + \sum _{i \in {N_c}} {\lambda _i} + \sum _{k \in {N_s} \cup {N_D}} {\mu _k} \cdot m_k^2. \end{aligned}$$

Finally, we conclude that

$$\begin{aligned} {z}(RF({\beta }, {\lambda }, {\mu })) = \bar{z}(RF({\beta }, {\lambda }, {\mu })) \geqslant \bar{z}(\overline{RF}({\beta }, {\lambda }, {\mu })) \geqslant {z}(\overline{RF}({\beta }, {\lambda }, {\mu })). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, L., Gu, H. & Huang, H. A lower bound for the adaptive two-echelon capacitated vehicle routing problem. J Comb Optim 33, 1145–1167 (2017). https://doi.org/10.1007/s10878-016-0028-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-016-0028-6

Keywords

Navigation