Skip to main content
Log in

A new effective branch-and-bound algorithm to the high order MIMO detection problem

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

This paper develops a branch-and-bound method based on a new convex reformulation to solve the high order MIMO detection problem. First, we transform the original problem into a \(\{-1,1\}\) constrained quadratic programming problem with the smallest size. The size of the reformulated problem is smaller than those problems derived by some traditional transformation methods. Then, we propose a new convex reformulation which gets the maximized average objective value as the lower bound estimator in the branch-and-bound scheme. This estimator balances very well between effectiveness and computational cost. Thus, the branch-and-bound algorithm achieves a high total efficiency. Several simulations are used to compare the performances of our method and other benchmark methods. The results show that this proposed algorithm is very competitive for high accuracy and relatively good efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Billionnet A, Elloumi S (2007) Using a mixed integer quadratic programming solver for the unconstrained quadratic 0–1 problem. Math Program 109:55–68

    Article  MathSciNet  MATH  Google Scholar 

  • Bunse-Gerstner A, Kubaliń D, Vossen G, Wilczek D (2010) \(h_2\)-norm optimal model reduction for large scale discrete dynamical MIMO systems. J Comput Appl Math 233:1202–1216

    Article  MathSciNet  MATH  Google Scholar 

  • Damen M, El Gamal H, Caire G (2003) On maximum-likelihood detection and the search for the closest lattice point. IEEE Trans Inf Theory 49:2389–2402

    Article  MathSciNet  MATH  Google Scholar 

  • Fincke U, Pohst M (1985) Improved methods for calculating vectors of short length in a lattice, including a complexity analysis. Math Computat 44:463–471

    Article  MathSciNet  MATH  Google Scholar 

  • El Gamal H, Caire G, Damen M (2004) Lattice coding and decoding achieve the optimal diversity-multiplexing tradeoff of MIMO channels. IEEE Trans Inf Theory 50:968–985

    Article  MathSciNet  MATH  Google Scholar 

  • Goldberger J, Leshem A (2011) MIMO detection for high-order QAM based on a Gaussian tree approximation. IEEE Trans Inf Theory 57:4973–4982

    Article  MathSciNet  Google Scholar 

  • Grant M, Boyd S (2010) CVX: matlab Software for Disciplined Programming. Version 1.2. http://cvxr.com/cvx

  • Jaldén J, Elia P (2010) DMT optimality of LR-aided linear decoders for a general class of channels, lattice designs, and system models. IEEE Trans Inf Theory 56:4765–4780

    Article  MathSciNet  Google Scholar 

  • Jaldén J, Ottersten B (2005) On the complexity of sphere decoding in digital communications. IEEE Trans Signal Process 53:1474–1484

    Article  MathSciNet  Google Scholar 

  • Kisialiou M, Luo Z (2005) Performance Analysis of Quasi-Maximum-Likelihood Detector Based on Semidefinite Programming. In: Proceedings of the IEEE International Conference on Acoustics Speech and Signal Process, vol III, pp 433–436

  • Liu S, Ling C, Stehlé D (2011) Decoding by sampling: A randomized lattice algorithm for bounded-distance decoding. IEEE Trans Inf Theory 57:5933–5945

    Article  MathSciNet  Google Scholar 

  • Lu C, Guo X (2015) Convex reformulation for binary quadratic programming problems via average objective value maximization. Optim Lett 9:523–535

    Article  MathSciNet  MATH  Google Scholar 

  • Luzzi L, Stehlé D, Ling C (2013) Decoding by embedding: Correct decoding radius and DMT optimality. IEEE Trans Inf Theory 59:960–2973

    Article  MathSciNet  Google Scholar 

  • Ma W, Davidson T, Wong K, Ching P (2004) A block alternating likelihood maximization approach to multiuser detection. IEEE Trans Signal Process 52:2600–2611

    Article  MathSciNet  Google Scholar 

  • Ma W, Su C, Jaldém J, Chang T, Chi C (2009) The equivalence of semidefinite relaxation MIMO detectors for higher-order QAM. IEEE J Select Top Signal Process 3:1038–1052

    Article  Google Scholar 

  • Mao Z, Wang X, Wang X (2007) Semidefinite programming relaxation approach for multiuser detection of QAM signals. IEEE Trans Wire Commun 6:4275–4279

    Article  Google Scholar 

  • Pan J, Ma W, Jaldém J (2014) MIMO detection by Lagrangian dual maximum-likilihood relaxation: Reinterpreting regularized lattice decoding. IEEE Trans Signal Process 62:511–524

    Article  MathSciNet  Google Scholar 

  • Pardalos P, Rodgers G (1990) Computational aspects of a branch and bound algorithm for quadratic zero-one programming. Computing 45:131–144

    Article  MathSciNet  MATH  Google Scholar 

  • Sidiropoulos N, Luo Z (2006) A semidefinite relaxation approach to MIMO detection for higher-order constellations. IEEE Signal Process lett 13:525–528

    Article  Google Scholar 

  • Singh A, Elia P, Jaldén J (2012) Achieving a vanishing SNR gap to exact lattice decoding at a subexponential complexity. IEEE Trans Inf Theory 58:3692–3707

    Article  MathSciNet  Google Scholar 

  • Taherzadeh M, Khandani A (2010) On the limitations of the naive lattice decoding. IEEE Trans Inf Theory 56:4820–4826

    Article  MathSciNet  Google Scholar 

  • Tan P, Rasmussen L (2001) The application of semidefinite programming for detection in CDMA. IEEE J Select Areas Commun 19:1442–1449

    Article  Google Scholar 

  • Tian Y, Dang JF (2015) MIMO detection for high order QAM by canonical dual approach. J Appl Math. doi:10.1155/2015/201369

    MathSciNet  Google Scholar 

  • Tse D, Viswanath P (2005) Fundamentals of wireless communication. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Vandenberghe L, Boyd S (1996) Semidefinite programming. SIAM Rev 38:49–95

    Article  MathSciNet  MATH  Google Scholar 

  • Verdú S (1998) Multiuser detectection. Cambridge University Press, Cambridge

    Google Scholar 

  • Viterbo E, Boutros J (1999) A universal lattice code decoder for fading channels. IEEE Trans Inform Theory 45:1639–1642

    Article  MathSciNet  MATH  Google Scholar 

  • Wang Z, Fang SC, Gao D, Xing W (2008) Global extremal conditions for multi-integer quadratic programming. J Ind Manage Optim 4:213–225

    Article  MathSciNet  MATH  Google Scholar 

  • Wiesel A, Eldar Y, Shamai S (2005) Semidefinite relaxation for detection of 16-QAM signaling in MIMO channels. IEEE Signal Process Lett 13:525–528

    Google Scholar 

  • Wübben D, Seethaler D, Jaldén J, Matz G (2011) Lattice reduction. IEEE Signal Process Mag 28:70–91

    Article  Google Scholar 

Download references

Acknowledgments

Tian’s research has been supported by the Chinese National Science Foundation \(\# 11401485\) and \(\# 71331004\).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Li, K., Yang, W. et al. A new effective branch-and-bound algorithm to the high order MIMO detection problem. J Comb Optim 33, 1395–1410 (2017). https://doi.org/10.1007/s10878-016-0045-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-016-0045-5

Keywords

Navigation