Skip to main content
Log in

Conflict-free connection of trees

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

We study the conflict-free connection coloring of trees, which is also the conflict-free coloring of the so-called edge-path hypergraphs of trees. We first prove that for a tree T of order n, \( cfc (T)\ge cfc (P_n)=\lceil \log _{2} n\rceil \), which completely confirms the conjecture of Li and Wu [24]. We then present a sharp upper bound for the conflict-free connection number of trees by a simple algorithm. Furthermore, we show that the conflict-free connection number of the binomial tree with \(2^{k-1}\) vertices is \(k-1\). At last, we study trees which are \( cfc \)-critical, and prove that if a tree T is \( cfc \)-critical, then the conflict-free connection coloring of T is equivalent to the edge ranking of T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bar-Noy A, Cheilaris P, Smorodinsky S (2008) Deterministic conflict-free coloring for intervals: from offline to online. ACM Trans Algorithms 4:44:1–44:18

    Article  MathSciNet  Google Scholar 

  • Bodlaender HL, Deogun JS, Jansen K, Kloks T, Kratsch D, Müller H, Tuza Z (1998) Rankings of graphs. SIAM J Discret Math 11(1):168–181

    Article  MathSciNet  Google Scholar 

  • Bondy JA, Murty USR (2008) Graph theory, GTM 244. Springer, Berlin

    Book  Google Scholar 

  • Borowiecki P, Budajová K, Jendroll’ S, Krajč S (2011) Parity vertex colouring of graphs. Discuss Math Gr Theory 31:183–195

    Article  MathSciNet  Google Scholar 

  • Chang H, Huang Z, Li X, Mao Y, Zhao H (2018) On conflict-free connection of graphs, Discrete Appl. Math. https://doi.org/10.1016/j.dam.2018.08.006

  • Cheilaris P (2009) Conflict-free coloring. PhD. thesis, City University of New York, New York

  • Cheilaris P, Tóth G (2011) Graph unique-maximum and conflict-free colorings. J Discret Algorithms 9:241–251

    Article  MathSciNet  Google Scholar 

  • Cheilaris P, Keszegh B, Pálvöigyi D (2013) Unique-maximum and conflict-free coloring for hypergraphs and tree graphs. SIAM J. Discrete Math. 27:1775–1787

    Article  MathSciNet  Google Scholar 

  • Chen K, Fiat A, Kaplan H, Levy M, Matoušek J, Mossel E, Pach J, Sharir M, Smorodinsky S, Wagner U, Welzl E (2006) Online conflict-free coloring for intervals. SIAM J Comput 36:1342–1359

    Article  MathSciNet  Google Scholar 

  • Czap J, Jendrol’ S, Valiska J (2018) Conflict-free connection of graphs. Discuss Math Gr Theory 38(4):911–920

    Article  MathSciNet  Google Scholar 

  • de la Torre P, Geenlaw R, Schäffer AA (1995) Optimal edge ranking of trees in polynomial time. Algorithmica 13:529–618

    MathSciNet  Google Scholar 

  • Deng B, Li W, Li X, Mao Y, Zhao H (2017) Conflict-free connection numbers of line graphs. In: Proceedings of the COCOA 2017, Shanghai, China, Lecture Notes in Computer Science No. 10627, pp 141–151

  • Elbassioni K, Mustafa NH (2006) Conflict-free colorings of rectangles ranges. In: Proceedings of the 23rd international symposium on theoretical aspects of computer science (STACS), Springer, Berlin, 2006, pp 254–263

  • Even G, Lotker Z, Ron D, Smorodinsky S (2003) Conflict-free coloring of simple geometic regions with applications to frequency assignment in cellular networks. SIAM J Comput 33:94–136

    Article  MathSciNet  Google Scholar 

  • Gregor P, Šrekovski R (2012) Parity vertex colorings of binomial trees. Discuss Math Gr Theory 32:177–180

    Article  MathSciNet  Google Scholar 

  • Har-Peled S, Smorodinsky S (2005) Conflict-free coloring of points and simple regions in the plane. Discret Comput Geom 34:47–70

    Article  MathSciNet  Google Scholar 

  • Iyer AV, Ratliff HD, Vijayan G (1991) On an edge ranking problem of trees and graphs. Discret Appl Math 30:43–52

    Article  MathSciNet  Google Scholar 

  • Lam TW, Yue FL (1998) Edge ranking of graphs is hard. Discret Appl Math 85:71–86

    Article  MathSciNet  Google Scholar 

  • Lam TW, Yue FL (2001) Optimal edge ranking of trees in linear time. Algorithmica 30:12–33

    Article  MathSciNet  Google Scholar 

  • Li X, Magnant C (2015) Properly colored notions of connectivity-a dynamic survey. Theory Appl Gr 1:30

    Google Scholar 

  • Li X, Sun Y (2012) Rainbow connections of graphs. Springer briefs in math. Springer, New York

    Book  Google Scholar 

  • Li X, Sun Y (2017) An updated survey on rainbow connections of graphs-a dynamic survey. Theory Appl Gr 1:67

    Google Scholar 

  • Li X, Shi Y, Sun Y (2013) Rainbow connections of graphs: a survey. Gr Combin 29:1–38

    Article  MathSciNet  Google Scholar 

  • Li X, Magnant C, Qin Z (2018) Properly colored connectivity of graphs. Springer briefs in math. Springer, Berlin

    Book  Google Scholar 

  • Li Z, Wu B On the maximum value of conflict-free vertex-connection number of graphs. arXiv:1709.01225 [math.CO]

  • Pach J, Tardos G (2009) Conflict-free colourings of graphs and hypergraphs. Comb Probab Comput 18:819–834

    Article  MathSciNet  Google Scholar 

  • Pach J, Tóth G (2003) Conflict free colorings, discrete and computational geometry. Springer, Berlin, pp 665–671

    MATH  Google Scholar 

  • Smorodinsky S (2013) Conflict-free coloring and its applications. In: Bárány I et al (eds) Geometry-intuitive, discrete, and convex. Springer, Berlin, pp 331–389

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers for their valuable suggestions and comments, which helped to improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueliang Li.

Additional information

Supported by NSFC Nos. 11871034, 11531011 and NSFQH No. 2017-ZJ-790.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, H., Ji, M., Li, X. et al. Conflict-free connection of trees. J Comb Optim 42, 340–353 (2021). https://doi.org/10.1007/s10878-018-0363-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-018-0363-x

Keywords

Mathematical Subject Classification