Skip to main content
Log in

Fractional matching preclusion number of graphs and the perfect matching polytope

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

Let G be a graph with an even number of vertices. The matching preclusion number of G, denoted by mp(G), is the minimum number of edges whose deletion leaves the resulting graph without a perfect matching. We introduced a 0–1 linear program which can be used to find the matching preclusion number of graphs. In this paper, by relaxing of the 0–1 linear program we obtain a linear program and call its optimal objective value as fractional matching preclusion number of graph G, denoted by \(mp_f(G)\). We show \(mp_f(G)\) can be computed in polynomial time for any graph G. By using the perfect matching polytope, we transform it into a new linear program whose optimal value equals the reciprocal of \(mp_f(G)\). For bipartite graph G, we obtain an explicit formula for \(mp_f(G)\) and show that \(\lfloor mp_f(G) \rfloor \) is the maximum integer k such that G has a k-factor. Moreover, for any two bipartite graphs G and H, we show \(mp_f(G \square H) \geqslant mp_f(G)+\lfloor mp_f(H) \rfloor \), where \(G \square H\) is the Cartesian product of G and H.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anstee R (1985) An algorithmic proof of Tutte’s \(f\)-factor theorem. J Algorithms 6:112–131

    Article  MathSciNet  Google Scholar 

  • Birkhoff G (1946) Tres observaciones sobre el algebra lineal. Rev Univ Nac Tucumán (Ser A) 5:147–151

    Google Scholar 

  • Brigham RC, Harary F, Violin EC, Yellen J (2005) Perfect matching preclusion. Congr Numer 174:185–192

    MathSciNet  MATH  Google Scholar 

  • Cheng E, Lipták L (2012) Matching preclusion and conditional matching preclusion problems for tori and related Cartesian products. Discrete Appl Math 12:1699–1716

    Article  MathSciNet  Google Scholar 

  • Cheng E, Hu P, Jia R, Lipták L (2012a) Matching preclusion and conditional matching preclusion for bipartite interconnection networks I: sufficient conditions. Networks 59:349–356

    Article  MathSciNet  Google Scholar 

  • Cheng E, Hu P, Jia R, Lipták L (2012b) Matching preclusion and conditional matching preclusion problems for bipartite interconnection networks II: Cayley graphs generated by transposition trees and hyper-stars. Networks 59:357–364

    Article  MathSciNet  Google Scholar 

  • Cheng E, Lipman MJ, Lipták L (2012) Matching preclusion and conditional matching preclusion for regular interconnection networks. Discrete Appl Math 160:1936–1954

    Article  MathSciNet  Google Scholar 

  • Cheng E, Hu P, Jia R, Lipták L, Scholten B, Voss J (2014) Matching preclusion and conditional matching preclusion for pancake and burnt pancake graphs. Int J Parallel Emerg Distrib Syst 29:499–512

    Article  Google Scholar 

  • Cheng E, Connolly R, Melekian C (2015) Matching preclusion and conditional matching preclusion problems for the folded Petersen cube. Theor Comput Sci 576:30–44

    Article  MathSciNet  Google Scholar 

  • Cook WJ, Cunningham WH, Pulleyblank WR, Schrijver A (1998) Combinatorial optimization. Wiley, New York

    MATH  Google Scholar 

  • Edmonds J (1965) Maximum matching and a polyhedron with \(0,1\)-vertices. J Res Nat Bur Standards 69B:125–130

    Article  MathSciNet  Google Scholar 

  • Folkman J, Fulkerson DR (1970) Flows in infinite graphs. J Comb Theory 8:30–44

    Article  MathSciNet  Google Scholar 

  • Ford LR, Fulkerson DR (1956) Maximal flow through a network. Can J Math 8:399–404

    Article  MathSciNet  Google Scholar 

  • Grötschel M, Lovász L, Schrijver A (1988) Geometric algorithms and combinatorial optimization. Springer, Berlin

    Book  Google Scholar 

  • Hall P (1935) On representatives of subsets. J Lond Math Soc 10:26–30

    Article  Google Scholar 

  • Hoffman AJ (1960) Some recent applications of the theory of linear inequalities to extremal combinatorial analysis. In: Proceedings of symposia of applied mathematics, vol X, pp 113–127

  • Hu X, Liu H (2013) The (conditional) matching preclusion for burnt pancake graphs. Discrete Appl Math 161:1481–1489

    Article  MathSciNet  Google Scholar 

  • Lacroix M, Mahjoub AR, Martin S, Picouleau C (2012) On the NP-completeness of the perfect matching free subgraph problem. Theor Comput Sci 423:25–29

    Article  MathSciNet  Google Scholar 

  • Li Q, Shiu WC, Yao H (2015) Matching preclusion for cube-connected cycles. Discrete Appl Math 190–191:118–126

    Article  MathSciNet  Google Scholar 

  • Li Q, He J, Zhang H (2016) Matching preclusion for vertex-transitive networks. Discrete Appl Math 207:90–98

    Article  MathSciNet  Google Scholar 

  • Lin R, Zhang H (2016) Maximally matched and super matched regular graphs. Int J Comput Math Comput Syst Theory 1:74–84

    Article  MathSciNet  Google Scholar 

  • Lin R, Zhang H (2017) Matching preclusion and conditional edge-fault Hamiltonicity of binary de Bruijn graphs. Discrete Appl Math 233:104–117

    Article  MathSciNet  Google Scholar 

  • Lin R, Zhang H, Zhao W (2019) Matching preclusion for direct product of regular graphs. Discrete Appl Math. https://doi.org/10.1016/j.dam.2019.08.016

    Article  Google Scholar 

  • Liu Y, Liu W (2017) Fractional matching preclusion of graphs. J Comb Optim 34:522–533

    Article  MathSciNet  Google Scholar 

  • Lü H, Li X, Zhang H (2012) Matching preclusion for balanced hypercubes. Theor Comput Sci 465:10–20

    Article  MathSciNet  Google Scholar 

  • Ore O (1957) Graphs and subgraphs. Trans Am Math Soc 84:109–136

    Article  MathSciNet  Google Scholar 

  • Padberg MW, Rao MR (1982) Odd minimum cut-sets and b-matchings. Math Oper Res 7:67–80

    Article  MathSciNet  Google Scholar 

  • Scheinerman ER, Ullman DH (1997) Fractional graph theory: a rational approach to the theory of graphs. Wiley, New York

    MATH  Google Scholar 

  • Wang S, Wang R, Lin S, Li J (2010) Matching preclusion for \(k\)-ary \(n\)-cubes. Discrete Appl Math 158:2066–2070

    Article  MathSciNet  Google Scholar 

  • Wang Z, Melekian C, Cheng E, Mao Y (2019) Matching preclusion number in product graphs. Theor Comput Sci 755:38–47

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referees for their helpful comments and suggestions in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heping Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by NSFC (Grant No. 11871256) and Foundation of Education Department of Fujian Province (Grant No. JAT190417).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, R., Zhang, H. Fractional matching preclusion number of graphs and the perfect matching polytope. J Comb Optim 39, 915–932 (2020). https://doi.org/10.1007/s10878-020-00530-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-020-00530-2

Keywords

Mathematics Subject Classification

Navigation