Skip to main content
Log in

Convergence Properties of Dikin’s Affine Scaling Algorithm for Nonconvex Quadratic Minimization

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We study convergence properties of Dikin’s affine scaling algorithm applied to nonconvex quadratic minimization. First, we show that the objective function value either diverges or converges Q-linearly to a limit. Using this result, we show that, in the case of box constraints, the iterates converge to a unique point satisfying first-order and weak second-order optimality conditions, assuming the objective function Hessian Q is rank dominant with respect to the principal submatrices that are maximally positive semidefinite. Such Q include matrices that are positive semidefinite or negative semidefinite or nondegenerate or have negative diagonals. Preliminary numerical experience is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barnes, E. R. (1986), A variation on Karmarkar’s algorithm for solving linear programming problems, Mathematical Programming 36, 174-182.

    Article  Google Scholar 

  2. Bonnans, J. F. and Bouhtou, M. (1995), The trust region affine interior point algorithm for convex and nonconvex quadratic programming, RAIRO Recherche Opérationelle 29, 195-217.

    Google Scholar 

  3. Bonnans, J. F. and Pola, C. (1997), A trust region interior point algorithm for linearly constrained optimization, SIAM Journal on Optimization 7, 717-731.

    Article  Google Scholar 

  4. Castillo, I. and Barnes, E. R. (2000), Chaotic behavior of the affine scaling algorithm for linear programming, SIAM Journal on Optimization 11, 781-795.

    Article  Google Scholar 

  5. Conn, A. R., Gould, N. I. M. and Toint, P. L. (2000), Trust-Region Methods, SIAM Publication, Philadelphia, PA.

    Google Scholar 

  6. Dikin, I. I. (1967), Iterative solution of problems of linear and quadratic programming, Soviet Mathematics Doklady 8, 674-675.

    Google Scholar 

  7. Dikin, I. I. (1974), On the speed of an iterative process, Upravlyaemye Sistemi 12, 54-60.

    Google Scholar 

  8. Dikin, I. I. (1988), Letter to the Editor, Mathematical Programming 41, 393-394.

    Article  Google Scholar 

  9. Dikin, I. I. (1991), The convergence of dualvariables, Tech. Report, Siberian Energy Institute, Irkutsk, Russia.

    Google Scholar 

  10. Dikin, I. I. and Roos, C. (1997), Convergence of the dualvariables for the primal affine scaling method with unit steps in the homogeneous case, Journal of Optimization Theory and Applications 95, 305-321.

    Article  Google Scholar 

  11. Gonzaga, C. C. (1990), Convergence of the large step primal affine-scaling algorithm for primalnondegenerate linear programs, Tech. Report ES-230/90, Department of Systems Engineering and Computer Science, COPPE Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.

    Google Scholar 

  12. Gonzaga, C. C. and Carlos, L. A. (1990), A primal affine-scaling algorithm for linearly constrained convex programs, Tech. Report ES-238/90, Department of Systems Engineering and Computer Science, COPPE Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.

    Google Scholar 

  13. Hoffman, A. J. (1952), On approximate solutions of systems of linear inequalities, Journal of Research of the National Bureau of Standards 49, 263-265.

    Google Scholar 

  14. Karmarkar, N. (1984), A new polynomial-time algorithm for linear programming, Combinatorica 4, 373-395.

    Article  Google Scholar 

  15. Luo, Z.-Q. and Tseng, P. (1992), Error bound and convergence analysis of matrix splitting algorithms for the affine variational inequality problem, SIAM Journal on Optimization 2, 43-54.

    Article  Google Scholar 

  16. Mascarenhas, W. F. (1997), The affine scaling algorithm fails for stepsize 0 999, SIAM Journal on Optimization 7, 34-46.

    Article  Google Scholar 

  17. Monma, C. L. and Morton, A. J. (1987), Computationalexperiments with a dual affine variant of Karmarkar ‘s method for linear programming, Operations Research Letters 6, 261-267.

    Article  Google Scholar 

  18. Monteiro, R. D. C. and Tsuchiya, T. (1996), Superlinear convergence of the affine scaling algorithm, Mathematical Programming 75, 77-110.

    Google Scholar 

  19. Monteiro, R. D. C. and Tsuchiya, T. (1998), Global convergence of the affine scaling algorithm for convex quadratic programming, SIAM Journal on Optimization 8, 26-58.

    Article  Google Scholar 

  20. Monteiro, R. D. C., Tsuchiya, T. and Wang, Y. (1993), A simplified global convergence proof of the affine scaling algorithm, Annals of Operations Research 46/47, 443-482.

    Article  Google Scholar 

  21. Monteiro, R. D. C. and Wang, Y. (1998), Trust region affine scaling algorithms for linearly constrained convex and concave programs, Mathematical Programming 80, 283-313.

    Google Scholar 

  22. Moré, J. J. and Toraldo, G. (1989), Algorithm for bound constrained quadratic programming problems, Numerische Mathematik 55, 377-400.

    Article  Google Scholar 

  23. Muramatsu, M. and Tsuchiya, T. (1996), An affine scaling method with an infeasible starting point: convergence analysis under nondegeneracy assumption, Annals of Operations Research 62, 325-355.

    Article  Google Scholar 

  24. Saigal, R. (1996), A simple proof of a primal affine scaling method, Annals of Operations Research 62, 303-324.

    Article  Google Scholar 

  25. Sun, J. (1993), A convergence proof for an affine-scaling algorithm for convex quadratic programming without nondegeneracy assumptions, Mathematical Programming 60, 69-79.

    Article  Google Scholar 

  26. Sun, J. (1996), A convergence analysis for a convex version of Dikin ‘s algorithm, Annals of Operations Research 62, 357-374.

    Article  Google Scholar 

  27. Terlaky, T. and Tsuchiya, T. (1999), A note on Mascarenhas’ counterexample about global convergence of the affine scaling algorithm, Applied Mathematics and Optimization 40, 287-314.

    Article  Google Scholar 

  28. Tseng, P. and Luo, Z.-Q. (1992), On the convergence of the affine-scaling algorithm, Mathematical Programming 56, 301-319.

    Article  Google Scholar 

  29. Tseng, P. and Ye, Y. (2000), On some interior-point algorithms for nonconvex quadratic optimization, MathematicalProgramming 93, 217-225.

    Google Scholar 

  30. Tsuchiya, T. (1992), Global convergence property of the affine scaling methods for primal degenerate linear programming problems, Mathematics of Operations Research 17, 527-557.

    Article  Google Scholar 

  31. Tsuchiya, T. (1991), Global convergence of the affine scaling methods for degenerate linear programming problems, Mathematical Programming 52, 377-404.

    Article  Google Scholar 

  32. Tsuchiya, T. (1993), Global convergence of the affine scaling algorithm for primal degenerate strictly convex quadratic programming problems, Annals of Operations Research 46/47, 509-539.

    Article  Google Scholar 

  33. Tsuchiya, T. and Monteiro, R. D. C. (1996), Superlinear convergence of the affine scaling algorithm, Mathematical Programming 75, 77-110.

    Google Scholar 

  34. Tsuchiya, T. and Muramatsu, M. (1995), Global convergence of a long-step affine scaling algorithm for degenerate linear programming problems, SIAM Journal on Optimization 5, 525-551.

    Article  Google Scholar 

  35. Vanderbei, R. J. (1989), Affine-scaling for linear programs with free variables, Mathematical Programming 43, 31-44.

    Article  Google Scholar 

  36. Vanderbei, R. J. and Hall, L. A. (1993), Two-thirds is sharp for affine scaling, Operations Research Letters 13, 197-201.

    Article  Google Scholar 

  37. Vanderbei, R. J. and Lagarias, J. C. (1990), I. I. Dikin ‘s convergence result for the affine-scaling algorithm. In: Contemporary Mathematics 114, Am. Math. Soc., Providence, pp. 109-119.

    Google Scholar 

  38. Vanderbei, R. J., Meketon, M. S., and Freeman, B. A. (1986), A modification of Karmarkar ‘s linear programming algorithm, Algorithmica 1, 395-407.

    Article  Google Scholar 

  39. Ye, Y. (1989), An extension of Karmarkar ‘s projective algorithm and the trust region method for quadratic programming, In: Progress in Mathematical Programming: Interior Point and Related Methods, Megiddo N., (ed), Springer, Berlin, pp. 49-63.

    Google Scholar 

  40. Ye, Y. (1992), On affine scaling algorithms for nonconvex quadratic programming, Mathematical Programming 56, 285-300.

    Article  Google Scholar 

  41. Ye, Y. and Tse, E. (1989), An extension of Karmarkar ‘s projective algorithm for convex quadratic programming, Mathematical programming 44, 157-179.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tseng, P. Convergence Properties of Dikin’s Affine Scaling Algorithm for Nonconvex Quadratic Minimization. J Glob Optim 30, 285–300 (2004). https://doi.org/10.1007/s10898-004-8276-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-004-8276-x

Navigation