Skip to main content
Log in

A population global optimization algorithm to solve the image alignment problem in electron crystallography

  • Original Article
  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Knowledge of the structure of biological specimens is critical to understanding their function. Electron crystallography is an electron microscopy (EM) approach that derives the 3D structure of specimens at high-resolution, even at atomic detail. Prior to the tomographic reconstruction, the images taken from the microscope have to be properly aligned. Traditional alignment methods in electron crystallography are based on a phase residual function to be minimized by inefficient exhaustive search procedures. This work addresses this minimization problem from an evolutionary perspective. Universal Evolutionary Global Optimizer (UEGO), an evolutionary multimodal optimization algorithm, has been applied and evaluated for the task of image alignment in this field. UEGO has turned out to be a promising technique alternative to the standard methodology. The alignments found out by UEGO show high levels of accuracy, while reducing the number of function evaluations by a significant factor with respect to the standard method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amos L.A., Henderson R., Unwin P.N.T. (1982). Three-dimensional structure determination by electron microscopy of two-dimensional crystals. Prog. Biophys. Mol. Biol. 39:183–231

    Article  Google Scholar 

  2. Baumeister W., Steven A.C. (2000). Macromolecular electron microscopy in the era of structural genomics. Trends Biochem. Sci. 25: 624–631

    Article  Google Scholar 

  3. Brown L.G. (1992). A survey of image registration techniques. ACM Comput. Surve. 24:325–376

    Article  Google Scholar 

  4. Fernandez J.J., Carazo J.M. (1996). Analysis of structural variability within two-dimensional biological crystals by a combination of patch averaging techniques and self organizing maps. Ultramicroscopy 65:81–93

    Article  Google Scholar 

  5. Grant R.A., Schmid M.F., Chiu W., Deatherage J.F., Hosoda J. (1986). Alignment and merging of electron microscope images of frozen hydrated crystals of the T4 DNA helix destabilizing protein gp32*I. Biophys. J. 49:251–258

    Article  Google Scholar 

  6. He W.Z., Carazo J.M., Fernandez J.J. (2000). A new phase consistency criterion and its application in electron crystallography. Ultramicroscopy 85:73–91

    Article  Google Scholar 

  7. Henderson R. (2004). Realizing the potential of electron cryo-microscopy. Q. Rev. Biophys. 37:3–13

    Article  Google Scholar 

  8. Henderson R., Baldwin J.M., Ceska T.A, Zemlin F., Beckmann E., Downing K.H. (1990). Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J. Mol. Biol. 213:899–929

    Article  Google Scholar 

  9. Henderson, R., Baldwin, J.M., Downing, K.H., Lepault, J., Zemlin, F.: Structure of purple membrane from halobacterium halobium: recording, measurement and evaluation of electron micrographs at 3.5 \(\textsc{\aa}\) resolution. Ultramicroscopy, 19, 147–178 (1986).

  10. Kuhlbrandt W., Wang D.N., Fujiyoshi Y. (1994). Atomic model of plant light-harvesting complex by electron crystallography. Nature 367:614–621

    Article  Google Scholar 

  11. Maintz J.B.A., Viergever M.A. (1998). A survey of medical image registration. Med. Image Anal 2(1):1–36

    Article  Google Scholar 

  12. Nogales E., Wolf S.G., Downing K.H. (1998). Structure of the alpha beta tubulin dimer by electron crystallography. Nature 391:199–203

    Article  Google Scholar 

  13. Ortigosa P.M., García I., Jelasity M. (2001). Reliability and performance of UEGO, a clustering-based global optimizer. J. of Global Optim. 19(3):265–289

    Article  Google Scholar 

  14. Sali A., Glaeser R., Earnest T., Baumeister W. (2003). From words to literature in structural proteomics. Nature 422:216–225

    Article  Google Scholar 

  15. Solis F.J., Wets R.J.B. (1981). Minimization by random search techniques. Math. Oper. Res. 6(1):19–30

    Google Scholar 

  16. Stahlberg H., Fotiadis D., Scheuring S., Rémigy H., Braun T., Mitsuoka K., Fujiyoshi Y., Engel A. (2001). Two-dimensional crystals: a powerful approach to assess structure, function and dynamics of membrane proteins. FEBS Lett. 504:166–172

    Article  Google Scholar 

  17. Stewart M. (1988). Introduction to the computer image processing of electron micrographs of two-dimensionally ordered biological structures. J. Elec. Microsc. Tech. 9:301–324

    Article  Google Scholar 

  18. Valpuesta J.M., Fernandez J.J., Carazo J.M., Carrascosa J.L. (1999). The three-dimensional structure of a DNA translocating machine at 10 Å resolution. Structure 7:289–296

    Article  Google Scholar 

  19. Valpuesta J.M., Sousa N., Barthelemy I., Fernández J.J. Fujisawa H., Ibarra B., Carrascosa J.L. (2000). Structural analysis of the bacteriophage t3 head-to-tail connector. J. Struct. Biol. 131:146–155

    Article  Google Scholar 

  20. Walz T., Grigorieff N. (1998). Electron crystallography of 2D crystals of membrane proteins. J. Struct. Biol. 21:142–161

    Article  Google Scholar 

  21. Yeager M., Unger V.M., Mitra A.K. (1999). Three-dimensional structure of membrane proteins determined by 2D crystallization, electron cryomicroscopy, and image analysis. Methods Enzymol. 294:135–180

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Ortigosa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortigosa, P.M., Redondo, J.L., García, I. et al. A population global optimization algorithm to solve the image alignment problem in electron crystallography. J Glob Optim 37, 527–539 (2007). https://doi.org/10.1007/s10898-006-9060-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-006-9060-x

Keywords

Navigation