Skip to main content

Advertisement

Log in

On the interior regularity of weak solutions to the non-stationary Stokes system

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper, we prove that any weak solution to the non-stationary Stokes system in 3D with right hand side -div f satisfying (1.4) below, belongs to C( ]0, T[; C α (Ω)). The proof is based on Campanato-type inequalities and the existence of a local pressure introduced in Wolf [13].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Campanato S. (1965). Equazioni paraboliche del secondo ordine e spazi \({\mathcal{L}}^{2,\,\theta}(\Omega , \delta)\). Ann. Mat. Pura Appl. 69: 321–380

    Article  Google Scholar 

  2. Campanato S. (1981). Partial Hölder continuity of solutions of quasilinear parabolic systems of second order with linear growth. Rend. Sem. Mat. Univ. Padova 64: 59–75

    Google Scholar 

  3. Da Prato G. (1965). Spazi \({\mathcal{L}}^{2, \theta} (\Omega, \delta)\) e loro proprietà. Ann. Mat. Pura Appl. 69(4): 383–392

    Google Scholar 

  4. Koch, H., Solonnikov, V. A.: L p -estimates for a solution to the nonstationary Stokes equations. Problemy Mat. Anal. 22, 197–239 (2001). Engl. Transl.: J. Math. Sci. 106(3), 3042–3072 (2001)

  5. Koch, H., Solonnikov, V. A.: L p -estimates of the first-order derivatives of solutions to the nonstationary Stokes problem. In: Nonlin. Problems in Math. Physics and Related Topics, vol. I. In Honor of Prof. O. A. Ladyzhenskaya. Ed. M.sh. Birman et al. Intern. Math. Series vol. 1. Kluwer Academic Plenum Publishers, New York (2002) pp. 203–218

  6. Ladyzenskaya, O.A.: Mathematical problems of the dynamics of viscous incompressible fluids (Russian). Izdat. Nauka, Moskva 1961, 1970. German Transl.: Funktionalanalytische Untersuchungen der Navier-Stokes Gleichungen. Akad.-Verlag, Berlin (1965). Engl. Transl.: The Mathematical theory of Viscous Incompressible flow. Gordon and Breach, New York (1969)

  7. Naumann, J., Wolff, M.: Interior integral estimates on weak solutions of nonlinear parabolic systems. Preprint nr. 94–12, Fachber. Mathematik, Humboldt-Univ. Berlin (1994)

  8. Ohyama T. (1960). Interior regularity of weak solutions of the time dependent Navier-Stokes equation. Proc. Japan Acad 36: 273–277

    Article  Google Scholar 

  9. Serrin J. (1962). On the interior regularity of weak solutions of the Navier-Stokes equations. Arch. Rat. Mech. Anal 9: 187–195

    Article  Google Scholar 

  10. Sohr H. (2001). The Navier-Stokes equations. An elementary functional analytic approach. Birkhäuser, Basel

    Google Scholar 

  11. Takahashi S. (1990). On interior regularity criteria for weak solutions of the Navier-Stokes equations. Manuscripta Math 69: 237–254

    Article  Google Scholar 

  12. Temam R. (1977). Navier-Stokes equations. North-Holland, Amsterdam

    Google Scholar 

  13. Wolf J. (2007). Existence of weak solutions to the equations of non-stationary motion of non-Newtonian fluids with shear rate dependent viscosity. J. Math. Fluid Mech 9: 104–138

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Wolf.

Additional information

Proc. Conference “Variational analysis and PDE’s”. Intern. Centre “E. Majorana”, Erice, July 5–14, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naumann, J., Wolf, J. On the interior regularity of weak solutions to the non-stationary Stokes system. J Glob Optim 40, 277–288 (2008). https://doi.org/10.1007/s10898-007-9197-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-007-9197-2

Keywords

Mathematics Subject Classification (2000)

Navigation