Skip to main content
Log in

Critical duality

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We look for a general framework in which the Ekeland duality can be formulated. We propose a scheme in which the parameter sets are provided with a coupling function which induces a conjugacy. The decision spaces are not supposed to have any special structure. We examine several examples. In particular, we consider some special classes of generalized convex functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin J.-P. (1979). Mathematical Methods of Games and Economic Theory. North-Holland, Amsterdam

    Google Scholar 

  2. Aubin J.-P. and Ekeland I. (1984). Applied Nonlinear Analysis. Wiley, New York

    Google Scholar 

  3. Auslender A. (2000). Existence of optimal solutions and duality results under weak conditions. Math. Program. Ser. A 88: 45–59

    Article  Google Scholar 

  4. Balder E.J. (1977). An extension of duality-stability relations to nonconvex problems. SIAM J. Control Optim. 15: 329–343

    Article  Google Scholar 

  5. Balder E.J. (1980). Nonconvex duality-stability relations pertaining to the interior penalty method. Math. Oper. Stat. Ser. Optim. 11: 367–378

    Google Scholar 

  6. Ben-Tal A. and Teboulle M. (1996). A conjugate duality scheme generating a new class of differentiable duals. SIAM J. Optim. 6(3): 617–625

    Article  Google Scholar 

  7. Clarke F. (1979). A classical variational principle for periodic Hamiltonian trajectories. Proc. Am. Math. Soc. 76: 186–188

    Article  Google Scholar 

  8. Clarke F.H. (1983). Optimization and Nonsmooth Analysis. Wiley, New York

    Google Scholar 

  9. Crouzeix J.-P. (1977). Conjugacy in quasiconvex analysis. In: Auslender, A. (eds) Convex Analysis and its Applications, Lecture Notes in Economics and Mathematical Systems, vol. 144, pp 66–99. Springer-Verlag, Berlin

    Google Scholar 

  10. Crouzeix J.-P. (2003). La convexité généralisée en économie mathématique. ESAIM: Proc. 13: 31–40

    Google Scholar 

  11. Dolecki S. and Kurcyusz S. (1978). On \(\Phi\)-convexity in extremal problems SIAM J. Control Optim. 16: 277–300

    Article  Google Scholar 

  12. Eberhard A., Nyblom M. and Ralph D. (1998). Applying generalized convexity notions to jets. In: Crouzeix, J.-P. (eds) Generalized Convexity, Generalised Monotonicity: Recent Results, pp 111–157. Kluwer, Dordrecht

    Google Scholar 

  13. Ekeland I. (1977). Legendre duality in nonconvex optimization and calculus of variations. SIAM J. Control Optim. 15(6): 905–934

    Article  Google Scholar 

  14. Ekeland, I.: Nonconvex duality. Bulletin Soc. Math. France, Mémoire no 60 “Analyse non convexe, Pau, 1977”, pp. 45–55 (1979)

  15. Ekeland I. (1990). Convexity Methods in Hamiltonian Mechanics, Ergebnisse der Math. #19. Springer-Verlag, Berlin

    Google Scholar 

  16. Ekeland I. and Lasry J.-M. (1980). Principes variationels en dualit é. C. R. Acad. Sci. Paris 291: 493–497

    Google Scholar 

  17. Ekeland, I., Lasry, J.-M.: Duality in nonconvex variational problems. In: Aubin, J.P., Bensoussan, A., Ekeland, I. (eds.) Advances in Hamiltonian Systems. Birkhäuser, Basel (1983)

  18. Ekeland I. and Témam R. (1976). Analyse Convexe et Problèmes Variationnels, Dunod, Paris. English translation. North Holland, Amsterdam

    Google Scholar 

  19. Flachs J. and Pollatschek M.A. (1969). Duality theorems for certain programs involving minimum or maximum operations. Math. Progr. 16: 348–370

    Article  Google Scholar 

  20. Flores-Bazán F. (1995). On a notion of subdifferentiability for non-convex functions. Optimization 33: 1–8

    Article  Google Scholar 

  21. Flores-Bazán F. and Martínez-Legaz J.E. (1998). Simplified global optimality conditions in generalized conjugation theory. In: Crouzeix, J.-P., Martínez-Legaz, J.E. and Volle, M. (eds) Generalized Convexity, Generalized Monotonicity, pp 303–329. Kluwer, Dordrecht

    Google Scholar 

  22. Frank A. (1982). An algorithm for submodular functions on graphs. Ann. Discrete Math. 16: 97–120

    Google Scholar 

  23. Fujishige S. (1984). Theory of submodular programs: a Fenchel-type min-max theorem and subgradients of submodular functions. Math. Progr. 29: 142–155

    Article  Google Scholar 

  24. Gao D.Y. (2000). Canonical dual transformation method and generalized triality theory in nonsmooth global optimization. J. Glob. Optim. 17(1–4): 127–160

    Article  Google Scholar 

  25. Gao D.Y. (2000). Duality Principles in Nonconvex Systems. Theory, Methods and Applications. Nonconvex Optimization and Its Applications 39. Kluwer, Dordrecht

    Google Scholar 

  26. Gao, D.Y.: Complementarity, polarity and triality in non-smooth, non-convex and non-conservative Hamilton systems. Philos. Trans. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 359(1789), 2347–2367 (2001)

  27. Gao D.Y. (2004). Canonical duality theory and solutions to constrained nonconvex quadratic programming. J. Glob. Optim. 29(3): 377–399

    Article  Google Scholar 

  28. Gao D.Y. and Strang G. (1989). Geometric nonlinearity: potential energy, complementary energy and the gap function. Quart. Appl. Math. 47(3): 487–504

    Google Scholar 

  29. (2001). Nonsmooth/Nonconvex Mechanics. Modeling, Analysis and Numerical Methods. Nonconvex Optimization and its Applications 50. Kluwer, Boston

    Google Scholar 

  30. Greenberg H.P. and Pierskalla W.P. (1973). Quasiconjugate function and surrogate duality. Cahiers Centre d’Etude Rech. Oper. 15: 437–448

    Google Scholar 

  31. Ioffe A.D. (2001). Abstract convexity and non-smooth analysis. Adv. Math. Econ. 3: 45–61

    Google Scholar 

  32. Ioffe A.D. and Rubinov A.M. (2002). Abstract convexity and nonsmooth analysis. Global aspects. Adv. Math. Econ. 4: 1–23

    Google Scholar 

  33. Kutateladze S.S. and Rubinov A.M. (1972). Minkowski duality and its applications. Russian Math. Surveys 27: 137–191

    Article  Google Scholar 

  34. Lindberg, P.O.: A generalization of Fenchel conjugation giving generalized Lagrangians and symmetric nonconvex duality. In: Survey of Mathematical Programming. Proc. Int. Symp., vol. 1, pp. 249–267, Budapest 1976 (1980)

  35. Lovász L. (1983). Submodular functions and convexity. In: Bachem, A., Grötschel, M. and Korte, B. (eds) Mathematical Programming, the State of the Art, Bonn 1982, pp 235–257. Springer Verlag, Berlin

    Google Scholar 

  36. Martínez-Legaz J.-E. (1988). On lower subdifferentiable functions. In: Hoffmann, K.H. (eds) Trends in Mathematical Optimization. Int. Series Numer. Math. 84, pp 197–232. Birkhauser, Basel

    Google Scholar 

  37. Martínez-Legaz J.-E. (1988). Quasiconvex duality theory by generalized conjugation methods. Optimization 19: 603–652

    Article  Google Scholar 

  38. Martínez-Legaz J.-E. (1995). Fenchel duality and related properties in generalized conjugation theory. Southeast Asian Bull. Math. 19: 99–106

    Google Scholar 

  39. Martínez-Legaz J.-E. and Rubinov A.M. (2001). Increasing positively homogeneous functions defined on \(\mathbb{R}^{n}\). Acta Math. Vietnam. 26(3): 313–331

    Google Scholar 

  40. Martínez-Legaz J.-E., Rubinov A.M. and Singer I. (2002). Downward sets and their separation and approximation properties. J. Glob. Optim. 23(2): 111–137

    Article  Google Scholar 

  41. Martínez-Legaz J.-E. and Singer I. (1990). Dualities between complete lattices. Optimization 21: 481–508

    Article  Google Scholar 

  42. Martínez-Legaz J.-E. and Singer I. (1995). Subdifferentials with respect to dualities. ZOR. Math. Meth. Oper. Res. 42(1): 109–125

    Article  Google Scholar 

  43. Murota K. (2003). Discrete Convex Analysis. SIAM Monographs on Dicrete Mathematics and Applications. SIAM, Philadelphia

    Google Scholar 

  44. Oettli W. and Schläger D. (1998). Conjugate functions for convex and nonconvex duality. J. Glob. Optim. 13(4): 337–347

    Article  Google Scholar 

  45. Pallaschke D. and Rolewicz S. (1998). Foundations of Mathematical Optimization, Convex Analysis without Linearity. Kluwer, Dordrecht

    Google Scholar 

  46. Penot, J.-P.: Generalized derivatives of a performance function and multipliers in mathematical programming. In: Guddat J., Jongen H.Th., Nozicka F., Still G., Twilt F. (eds.) Parametric Optimization and Related Topics IV, Proceedings Intern. Conference Enschede, June 1995, pp. 281–298. Peter Lang (1996)

  47. Penot J.-P. (1997). Multipliers and generalized derivatives of performance functions. J. Optim. Theory Appl. 93(3): 609–618

    Article  Google Scholar 

  48. Penot J.-P. (1997). Duality for radiant and shady programs. Acta Math. Vietnam. 22(2): 541–566

    Google Scholar 

  49. Penot J.-P. (2000). What is quasiconvex analysis?. Optimization 47: 35–110

    Article  Google Scholar 

  50. Penot J.-P. (2001). Duality for anticonvex problems. J. Glob. Optim. 19: 163–182

    Article  Google Scholar 

  51. Penot J.-P. (2002). Augmented Lagrangians, duality and growth conditions. J. Nonlinear Convex Anal. 3(3): 283–302

    Google Scholar 

  52. Penot J.-P. (2003). Rotundity, smoothness and duality. Control Cybern. 32(4): 711–733

    Google Scholar 

  53. Penot J.-P. (2005). The bearing of duality on microeconomics. Adv. Math. Econ. 7: 113–139

    Article  Google Scholar 

  54. Penot J.-P. (2005). Unilateral analysis and duality. In: Savard, G. (eds) Essays and Surveys in Global Optimization, pp 1–37. Springer, New York

    Chapter  Google Scholar 

  55. Penot J.-P. (2005). The Legendre transform of correspondences. Pacific J. Optim. 1(1): 161–177

    Google Scholar 

  56. Penot, J.-P.: Ekeland duality as a paradigm. In: Gao D.Y., Sherali H.D. (eds.) Advances in Mechanics and Mathematics III, pp. 337–364, Springer (2007)

  57. Penot, J.-P.: Legendre functions and the theory of characteristics. Preprint, University of Pau, Dec. 2004.

  58. Penot J.-P. and Rubinov A. (2005). Multipliers and general Lagrangians. Optimization 54(4–5): 443–467

    Article  Google Scholar 

  59. Penot J.-P. and Volle M. (1987). Dualité de Fenchel et quasi-convexité. C.R. Acad. Sci. Paris Série I 304(13): 371–374

    Google Scholar 

  60. Penot, J.-P., Volle, M.: Another duality scheme for quasiconvex problems. In: Hoffmann, K.H. et al. (eds.) Trends in Mathematical Optimization. Int. Series Numer. Math. 84, pp. 259–275. Birkhäuser, Basel (1988)

  61. Penot J.-P. and Volle M. (1990). On quasi-convex duality. Math. Oper. Res. 15(4): 597–625

    Article  Google Scholar 

  62. Penot J.-P. and Volle M. (1990). On strongly convex and paraconvex dualities. In: Cambini, A., Castagnoli, E., Martein, L., Mazzoleni, P. and Schaible, S. (eds) Generalized Convexity and Fractional Programming with Economic Applications. Proceedings, Pisa, Italy 1988. Lecture notes Econ. Math. Systems # 345, pp 198–218. Springer Verlag, Berlin

    Google Scholar 

  63. Penot J.-P. and Volle M. (2003). Surrogate programming and multipliers in quasiconvex programming. SIAM J. Control Optim. 42(6): 1994–2003

    Article  Google Scholar 

  64. Plastria F. (1985). Lower subdifferentiable functions and their minimization by cutting plane. J. Optim. Th. Appl. 46(1): 37–54

    Article  Google Scholar 

  65. Rockafellar R.T. (1974). Augmented Lagrange multiplier functions and duality in nonconvex programming. SIAM J. Control Optim. 12: 268–285

    Article  Google Scholar 

  66. Rockafellar R.T. (1974). Conjugate Duality and Optimization. CBMS-NSF Series 16. SIAM, Philadelphia

    Google Scholar 

  67. Rockafellar R.T. and Wets R. J-B. (1997). Variational Analysis. Springer-Verlag, Berlin

    Google Scholar 

  68. Rolewicz S. (1994). Convex analysis without linearity. Control Cybern. 23: 247–256

    Google Scholar 

  69. Rolewicz S. (1996). Duality and convex analysis in the absence of linear structure. Math. Japonica 44: 165–182

    Google Scholar 

  70. Rolewicz S. (2005). Paraconvex analysis. Contol Cybern. 34(3): 951–965

    Google Scholar 

  71. Rubinov A.M. (2000). Abstract Convexity and Global Optimization. Kluwer, Dordrecht

    Google Scholar 

  72. Rubinov, A.M.: Radiant sets and their gauges. In: Demyanov, V., Rubinov, A.M. (eds.) Quasidifferentiability and Related Topics. Kluwer, Dordrecht (2000)

  73. Rubinov A.M. and Andramonov M. (1999). Lipschitz programming via increasing convex-along-rays functions. Optim. Meth. Softw. 10: 763–781

    Article  Google Scholar 

  74. Rubinov A.M. and Glover B.M. (1997). On generalized quasiconvex conjugation. In: Censor, Y. and Reich, S. (eds) Recent Developments in Optimization Theory and Nonlinear Analysis, pp 199–216. American Mathematical Society, Providence

    Google Scholar 

  75. Rubinov A.M. and Glover B.M. (1998). Quasiconvexity via two steps functions. In: Crouzeix, J.-P., Martínez-Legaz, J.-E. and Volle, M. (eds) Generalized Convexity, Generalized Monotonicity, pp 159–183. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  76. Rubinov A.M. and Glover B.M. (1998). Duality for increasing positively homogeneous functions and normal sets. Rech. Opér. 32: 105–123

    Google Scholar 

  77. Rubinov A.M. and Glover B.M. (1999). Increasing convex-along-rays functions with applications to global optimization J. Optim. Theory Appl. 102: 615–642

    Article  Google Scholar 

  78. Rubinov A.M. and Simsek B. (1995). Conjugate quasiconvex nonnegative functions. Optimization 35: 1–22

    Article  Google Scholar 

  79. Rubinov A.M. and Yagublov A.A. (1986). The space of starshaped sets and its applications in nonsmooth optimization. Math. Prog. Study 29: 176–202

    Google Scholar 

  80. Rubinov A.M., Glover B.M. and Yang X.Q. (1999). Extended Lagrange and penalty functions in continuous optimization. Optimization 46: 327–351

    Article  Google Scholar 

  81. Rubinov A.M., Glover B.M. and Yang X.Q. (1999). Decreasing functions with applications to optimization. SIAM J. Optim. 10: 289–313

    Article  Google Scholar 

  82. Rubinov A.M., Glover B.M. and Yang X.Q. (2000). Nonlinear unconstrained optimization methods: a review. In: Yang, X. (eds) Progress in Optimization., pp 65–77. Kluwer, Dordrecht

    Google Scholar 

  83. Shveidel A. (1997). Separability of star-shaped sets and its application to an optimization problem. Optimization. 40: 207–227

    Article  Google Scholar 

  84. Singer I. (1986). Some relations between dualities, polarities, coupling functions and conjugations. J. Math. Anal. Appl. 115: 1–22

    Article  Google Scholar 

  85. Singer I. (1997). Abstract Convex Analysis. J. Wiley, New York

    Google Scholar 

  86. Thach P.T. (1991). Quasiconjugate of functions, duality relationships between quasiconvex minimization under a reverse convex constraint and quasiconvex maximization under a convex constraint and application. J. Math. Anal. Appl. 159: 299–322

    Article  Google Scholar 

  87. Thach P.T. (1993). Global optimality criterion and a duality with a zero gap in nonconvex optimization. SIAM J. Math. Anal. 24(6): 1537–1556

    Article  Google Scholar 

  88. Thach P.T. (1994). A nonconvex duality with zero gap and applications. SIAM J. Optim. 4(1): 44–64

    Article  Google Scholar 

  89. Thach P.T. (1995). Diewert-Crouzeix conjugation for general quasiconvex duality and applications. J. Optim. Theory Appl. 86(3): 719–743

    Article  Google Scholar 

  90. Tind J. and Wolsey L.A. (1981). An elementary survey of general duality theory in mathematical programming. Math. Program. 21: 241–261

    Article  Google Scholar 

  91. Volle M. (1985). Conjugaison par tranches. Ann. Mat. Pura Appl. 139: 279–312

    Article  Google Scholar 

  92. Yang X. Q. and Huang X.X. (2001). A nonlinear Lagrangian approach to constrained optimization problems. SIAM J. Optim. 11(4): 1119–1144

    Article  Google Scholar 

  93. Zaffaroni A. (2004). Is every radiant function the sum of quasiconvex functions?   . Math. Meth. Oper. Res. 59: 221–233

    Article  Google Scholar 

  94. Zaffaroni A.: A conjugation scheme for radiant functions, preprint. Univ. di Lecce (2004)

  95. Zălinescu C. (2002). Convex Analysis in General Vector Spaces. World Scientific, Singapore

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Paul Penot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Penot, JP. Critical duality. J Glob Optim 40, 319–338 (2008). https://doi.org/10.1007/s10898-007-9215-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-007-9215-4

Keywords

Navigation