Skip to main content
Log in

Using the idea of expanded core for the exact solution of bi-objective multi-dimensional knapsack problems

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We propose a methodology for obtaining the exact Pareto set of Bi-Objective Multi-Dimensional Knapsack Problems, exploiting the concept of core expansion. The core concept is effectively used in single objective multi-dimensional knapsack problems and it is based on the “divide and conquer” principle. Namely, instead of solving one problem with n variables we solve several sub-problems with a fraction of n variables (core variables). In the multi-objective case, the general idea is that we start from an approximation of the Pareto set (produced with the Multi-Criteria Branch and Bound algorithm, using also the core concept) and we enrich this approximation iteratively. Every time an approximation is generated, we solve a series of appropriate single objective Integer Programming (IP) problems exploring the criterion space for possibly undiscovered, new Pareto Optimal Solutions (POS). If one or more new POS are found, we appropriately expand the already found cores and solve the new core problems. This process is repeated until no new POS are found from the IP problems. The paper includes an educational example and some experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fréville A.: The multidimensional 0–1 knapsack problem: an overview. Eur. J. Oper. Res. 155, 1–21 (2004)

    Article  Google Scholar 

  2. Kellerer H., Pferschy U., Pisinger D.: Knapsack Problems. Springer, Berlin (2004)

    Google Scholar 

  3. Puchinger J., Raidl G.R., Pferschy U.: The core concept for the multidimensional knapsack problem. In: Gottlieb, J., Raidl, G.R. (eds) Lecture Notes on Computer Sciences 3906, pp. 195–208. Springer, Berlin (2006)

    Google Scholar 

  4. Balas E., Zemel E.: An algorithm for large zero–one knapsack problems. Oper. Res. 28, 1130–1154 (1980)

    Article  Google Scholar 

  5. Martello S., Toth P.: A new algorithm for the 0–1 knapsack problem. Manag. Sci. 34, 633–644 (1988)

    Article  Google Scholar 

  6. Martello S., Toth P.: Knapsack Problems—Algorithms and Computer Implementations. Wiley, New York (1990)

    Google Scholar 

  7. Pisinger, D.: Algorithms for Knapsack problems. Ph.D. Thesis, Dept. of Computer Science, University of Copenhagen (1995)

  8. Gomes da Silva C., Climaco J., Figueira J.: Core problems in bi-criteria {0, 1}-knapsack problems. Comput. Oper. Res. 35, 2292–2306 (2008)

    Article  Google Scholar 

  9. Chinchuluun A., Pardalos P.M., Migdalas A., Pitsoulis L.: Pareto Optimality, Game Theory and Equilibria, Series, vol. 17. Springer, Berlin (2008)

    Book  Google Scholar 

  10. Chinchuluun A., Pardalos P.M.: A survey of recent developments in multiobjective optimization. Ann. Oper. Res. 154(1), 29–50 (2007)

    Article  Google Scholar 

  11. Mavrotas, G., Figueira, J.R., Florios, K.: Solving the bi-objective multidimensional knapsack problem exploiting the concept of core. Appl. Math. Comput. 215(7), 2502-2514

  12. Mavrotas G., Diakoulaki D.: A branch and bound algorithm for mixed zero–one multiple objective linear programming. Eur. J. Oper. Res. 107, 530–541 (1998)

    Article  Google Scholar 

  13. Mavrotas G., Diakoulaki D.: Multi-criteria branch & bound: a vector maximization algorithm for mixed 0–1 multiple objective linear programming. Appl. Math. Comput. 171, 53–71 (2005)

    Article  Google Scholar 

  14. Jahanshahloo G.R, Hosseinzadeh F., Shoja N., Tohidi G.: A method for generating all efficient solutions of 0–1 multiobjective linear programming problem. Appl. Math. Comput. 169, 866–874 (2005)

    Article  Google Scholar 

  15. Jolai F., Rezaee MJ., Rabbani M., Razmi J., Fattahi P.: Exact algorithm for bi-objective 0–1 knapsack problem. Appl. Math. Comput. 194, 544–551 (2007)

    Article  Google Scholar 

  16. Visée M., Teghem J., Ulungu E.L.: Two-phase method and branch and bound procedures to solve the bi-objective knapsack problem. J. Glob. Optim. 12, 139–155 (1998)

    Article  Google Scholar 

  17. Steuer R.E.: Multiple Criteria Optimization-Theory, Computation and Application. 2nd edn. Krieger, Malabar (1989)

    Google Scholar 

  18. Steuer R.E.: The ADBASE multiple objective linear programming package. In: Gu, J., Chen, G., Wei, Q., Wang, S. (eds) Multiple Criteria Decision Making, pp. 1–6. Windsor, England (1995)

    Google Scholar 

  19. Mavrotas, G.: Multiple Objective Programming under Uncertainty: Development of a Decision Support System and Implementation in Energy Planning. Ph.D. Thesis, National Technical University of Athens, Athens (2000)

  20. Brooke A., Kendrick D., Meeraus A., Raman R.: GAMS. A user’s guide. GAMS development corporation, Washington (1998)

    Google Scholar 

  21. Gomes da Silva C., Climaco J., Figueira J.: A scatter search method for the bi-criteria multi-dimensional {0,1}-knapsack problem using surrogate relaxation. J. Math. Model. Algorit. 3, 183–208 (2004)

    Article  Google Scholar 

  22. Chu P.C., Beasley J.: A genetic algorithm for the multidimensional knapsack problem. J. Heuristics 4, 63–86 (1998)

    Article  Google Scholar 

  23. Laumanns M., Thiele L., Zitzler E.: An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method. Eur. J. Oper. Res. 169, 932–942 (2006)

    Article  Google Scholar 

  24. Gomes da Silva, C., Figueira, J., Climaco, J.: An exact method for the bicriteria {0,1}-knapsack problem based on functions specialization, Research Report no 24, INESC-Coimbra, Portugal (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Mavrotas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mavrotas, G., Figueira, J.R. & Antoniadis, A. Using the idea of expanded core for the exact solution of bi-objective multi-dimensional knapsack problems. J Glob Optim 49, 589–606 (2011). https://doi.org/10.1007/s10898-010-9552-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-010-9552-6

Keywords

Navigation