Skip to main content
Log in

Small sets in best approximation theory

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

The best approximation problem to a nonempty closed set in a locally uniformly convex Banach space is considered. The main result states that the set of points which have best approximation but the approximation problem is not well-posed is very small in a sense that it is σ-cone supported in the underlying space. This gives an improvement of an original result of Stečkin about the set of points with more than one best approximation which involves Baire categories. Examples on the necessity of some of the imposed conditions are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balaganskii V.S., Vlasov L.P.: The problem of the convexity of Chebyshev sets. Uspekhi Mat. Nauk. 51:6, 125–188 (1996) (in Russian)

    Google Scholar 

  2. Balaganskii V.S., Vlasov L.P.: The problem of the convexity of Chebyshev sets. Russ. Math. Surv. 51:6, 1127–1190 (1996)

    Article  Google Scholar 

  3. Benyamini, Y., Lindenstrauss, J.: Geometric Nonlinear Functional Analysis, Vol. 1, AMS Colloquium Publ., Vol. 48, 2000, Providence, USA

  4. Cobzaş St.: Generic existence of solutions for some perturbed minimization problems. J. Math. Anal. Appl. 243, 344–356 (2000)

    Article  Google Scholar 

  5. Day M.M.: Normed Linear Spaces. Springer, Berlin-Göttingen-Heidelberg (1958)

    Google Scholar 

  6. De Blasi F.S., Myjak J.: On a generalized best approximation problem. J. Approx. Theor. 94, 54–72 (1998)

    Article  Google Scholar 

  7. De Blasi F.S., Myjak J., Papini P.: Porous sets in best approximation theory. J. Lond. Math. Soc. 44, 135–142 (1991)

    Article  Google Scholar 

  8. Duda J.: On the size of the set of points where the metric projection exists. Israel J. Math. 140, 271–283 (2004)

    Article  Google Scholar 

  9. Duda J.: On a decomposition of Banach spaces. Colloq. Math. 108, 147–157 (2007)

    Article  Google Scholar 

  10. Erdös P.: On the Hausdorff dimension of some sets in Euclidean space. Bull. Am. Math. Soc. 52, 107–109 (1946)

    Article  Google Scholar 

  11. Fabian M., Preiss D.: On intermediate differentiability of Lipschitz functions on certain Banach spaces. Proc. Am. Math. Soc. 113(3), 733–740 (1991)

    Article  Google Scholar 

  12. Fabian M., Revalski J.P.: A variational principle in reflexive spaces. J. Convex Anal. 16(1), 211–226 (2009)

    Google Scholar 

  13. Fabian M., Zhivkov N.V.: A characterization of Asplund spaces with the help of local ε-supports of Ekeland and Lebourg. Comput. Rend. Acad. Bulg. Sci. 38(6), 671–674 (1985)

    Google Scholar 

  14. Fitzpatrick S.: Metric projections and the differentiability of distance functions. Bull. Aust. Math. Soc. 22, 291–312 (1980)

    Article  Google Scholar 

  15. Furi M., Vignoli A.: About well-posed minimization problems for functionals in metric spaces. J. Optim. Theor. Appl. 5, 225–290 (1970)

    Article  Google Scholar 

  16. Klee V.: Some new results on smoothness and rotundity in normed linear spaces. Math. Ann. 139, 51–63 (1959)

    Article  Google Scholar 

  17. Klee, V.: Remarks on nearest points in normed linear spaces. Proc. Colloq. Convexity, Copenhagen, 1965, Copenhagen, pp. 168–176 (1967)

  18. Konjagin S.: Approximative properties of arbitrary sets in Banach spaces. Dokl. Akad. Nauk SSSR 239, 261–264 (1978) (in Russian)

    Google Scholar 

  19. Konjagin S.: Approximative properties of arbitrary sets in Banach spaces. Sov. Math. Dokl. 19(2), 309–312 (1978)

    Google Scholar 

  20. Konjagin S.: On approximation properties of closed sets in Banach spaces and the characterization of strongly convex spaces. Dokl. Akad. Nauk SSSR 251, 276–280 (1980) (in Russian)

    Google Scholar 

  21. Konjagin S.: On approximation properties of closed sets in Banach spaces and the characterization of strongly convex spaces. Sov. Math. Dokl. 21(2), 418–422 (1980)

    Google Scholar 

  22. Lau Ka-S.: Almost Chebyshev subsets in reflexive Banach spaces. Indiana Univ. Math. J. 27, 791–795 (1978)

    Article  Google Scholar 

  23. Li C., Peng L.H.: Porosity of perturbed optimization problems in Banach spaces. J. Math. Anal. Appl. 324, 751–761 (2006)

    Article  Google Scholar 

  24. Matoušková E.: How small are the sets where the metric projection fails to be continuous. Acta. Univ. Carolinae-Math. et Phys. 33(2), 99–108 (1992)

    Google Scholar 

  25. Reich S., Zaslavski A.: Well-posedness and porosity in best approximation problems. Topol. Meth. Nonlin. Anal. 18, 395–408 (2001)

    Google Scholar 

  26. Reich S., Zaslavski A.: Best apprximation and porous sets. Comment. Math. Univ. Carolin 44, 681–689 (2003)

    Google Scholar 

  27. Smith M.A.: Banach spaces that are uniformly rotund in weakly compact sets of directions. Canad. J. Math. 29, 963–970 (1977)

    Article  Google Scholar 

  28. Smith M.A.: Some examples concerning rotundity in Banach spaces. Math. Ann. 233, 155–161 (1978)

    Article  Google Scholar 

  29. Stečkin S.B.: Approximation properties of sets in normed linear spaces. Rev. Roum. Math. Pures Appl. 8, 5–18 (1963) (in Russian)

    Google Scholar 

  30. Troyanski S.: On locally uniformly convex and differentiable normes in certain nonseparable Banach spaces. Stuida Math. 37, 173–180 (1971)

    Google Scholar 

  31. Tykhonov A.N.: On the stability of the functional optimization problem. USSR J. Comp. Math. Math. Ph. 6, 631–634 (1966)

    Google Scholar 

  32. Zajíček L.: On the points of multivaluedness of metric projections in separable Banach spaces. Comment. Math. Univ. Carolin. 19, 513–525 (1978)

    Google Scholar 

  33. Zajíček L.: Porosity and σ-porosity. Real Anal. Exchange 13, 314–350 (1987/88)

    Google Scholar 

  34. Zajíček L.: Smallness of sets of nondifferentiability of convex functions in nonseparable Banach spaces. Czechoslovak Math. J. 41(2), 288–296 (1991)

    Google Scholar 

  35. Zajíček L.: On σ-porous sets in abstract spaces. Abstr. Appl. Anal. 5, 509–534 (2005)

    Article  Google Scholar 

  36. Zamfirescu T.: On the cut locus in Alexandrov spaces and applications to convex surfaces. Pac. J. Math. 217, 375–386 (2004)

    Article  Google Scholar 

  37. Zhivkov N.V.: Continuity and non-multivaluedness properties of metric projections and antiprojections. Serdica Bulg. Math. Publ. 8, 378–385 (1982)

    Google Scholar 

  38. Zhivkov N.V.: Generic Gâteaux differentiability of directionally differentiable mappings. Rev. Roum. Math. Pures Appl. 32, 179–188 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Revalski.

Additional information

The authors have been partially supported by the Bulgarian National Fund for Scientific Research under contract No: DO02-360/2008.

Part of these results were obtained while the first named author was professeur associé in the group LAMIA in the Department of Mathematics and Informatics of Université des Antilles et de la Guyane, Guadeloupe, France.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Revalski, J.P., Zhivkov, N.V. Small sets in best approximation theory. J Glob Optim 50, 77–91 (2011). https://doi.org/10.1007/s10898-010-9621-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-010-9621-x

Keywords

Mathematics Subject Classification (2000)

Navigation