We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

Min-max and robust polynomial optimization

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We consider the robust (or min-max) optimization problem

$$J^*:=\max_{\mathbf{y}\in{\Omega}}\min_{\mathbf{x}}\{f(\mathbf{x},\mathbf{y}): (\mathbf{x},\mathbf{y})\in\mathbf{\Delta}\}$$

where f is a polynomial and \({\mathbf{\Delta}\subset\mathbb{R}^n\times\mathbb{R}^p}\) as well as \({{\Omega}\subset\mathbb{R}^p}\) are compact basic semi-algebraic sets. We first provide a sequence of polynomial lower approximations \({(J_i)\subset\mathbb{R}[\mathbf{y}]}\) of the optimal value function \({J(\mathbf{y}):=\min_\mathbf{x}\{f(\mathbf{x},\mathbf{y}): (\mathbf{x},\mathbf{y})\in \mathbf{\Delta}\}}\). The polynomial \({J_i\in\mathbb{R}[\mathbf{y}]}\) is obtained from an optimal (or nearly optimal) solution of a semidefinite program, the ith in the “joint + marginal” hierarchy of semidefinite relaxations associated with the parametric optimization problem \({\mathbf{y}\mapsto J(\mathbf{y})}\), recently proposed in Lasserre (SIAM J Optim 20, 1995-2022, 2010). Then for fixed i, we consider the polynomial optimization problem \({J^*_i:=\max\nolimits_{\mathbf{y}}\{J_i(\mathbf{y}):\mathbf{y}\in{\Omega}\}}\) and prove that \({\hat{J}^*_i(:=\displaystyle\max\nolimits_{\ell=1,\ldots,i}J^*_\ell)}\) converges to J* as i → ∞. Finally, for fixed  ≤ i, each \({J^*_\ell}\) (and hence \({\hat{J}^*_i}\)) can be approximated by solving a hierarchy of semidefinite relaxations as already described in Lasserre (SIAM J Optim 11, 796–817, 2001; Moments, Positive Polynomials and Their Applications. Imperial College Press, London 2009).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ash R.B.: Real Analysis and Probability. Academic Press Inc, Boston (1972)

    Google Scholar 

  2. Ben-Tal A., El Ghaoui L., Nemirovski A.: Foreword: special issue on robust optimization. Math. Program. 107, 1–3 (2006)

    Article  Google Scholar 

  3. Ben-Tal A., El Ghaoui L., Nemirovski A.: Robustness. In: Wolkowicz, H., Saigal, R., Vandenberghe, L. (eds) Handbook of Semidefinite Programming: Theory, Algorithms, and Applications, Kluwer Academic Publishers, Boston (2000)

    Google Scholar 

  4. Ben-Tal A., Boyd S., Nemirovski A.: Extending scope of robust optimization: comprehensive robust counterparts of uncertain problems. Math. Program. Sér. B 107, 63–89 (2006)

    Article  Google Scholar 

  5. Bertsimas D., Nohadani O.: Robust optimization for unconstrained simulation-based problems. Oper. Res. 58, 161–178 (2010)

    Article  Google Scholar 

  6. Henrion D., Lasserre J.B., Lofberg J.: GloptiPoly 3: moments, optimization and semidefinite programming, optim. Methods Softw. 24, 761–779 (2009)

    Article  Google Scholar 

  7. Henrion D., Lasserre J.B.: GloptiPoly : global optimization over polynomials with Matlab and SeDuMi. ACM Trans. Math. Softw. 29, 165–194 (2003)

    Article  Google Scholar 

  8. Hernández-Lerma O., Lasserre J.B.: Discrete-Time Markov Control Processes: Basic Optimality Criteria. Springer, New York (1996)

    Google Scholar 

  9. Lasserre J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11, 796–817 (2001)

    Article  Google Scholar 

  10. Lasserre J.B.: Convergent SDP-relaxations in polynomial optimization with sparsity. SIAM J. Optim. 17, 822–843 (2006)

    Article  Google Scholar 

  11. Lasserre J.B.: Robust global optimization with polynomials. Math. Program. Sér. B 107, 275–293 (2006)

    Article  Google Scholar 

  12. Lasserre J.B.: Moments, Positive Polynomials and Their Applications. Imperial College Press, London (2009)

    Google Scholar 

  13. Lasserre J.B.: A “joint+marginal” approach to parametric polynomial optimization. SIAM J. Optim. 20, 1995–2022 (2010)

    Article  Google Scholar 

  14. Mitsos A., Lemonidis P., Kun Lee Cha., Barton P.I.: Relaxation-based bounds for semi-infinite programs. SIAM J. Optim. 19, 77–113 (2008)

    Article  Google Scholar 

  15. Parpas P., Rustem B.: An algorithm for the global optimization of a class of continuous minimax problems. J. Optim. Theor. Appl. 141, 461–473 (2009)

    Article  Google Scholar 

  16. Waki H., Kim S., Kojima M., Maramatsu M.: Sums of squares and semidefinite programming relaxations for polynomial optimization problems with structured sparsity. SIAM J. Optim. 17, 218–242 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. B. Lasserre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lasserre, J.B. Min-max and robust polynomial optimization. J Glob Optim 51, 1–10 (2011). https://doi.org/10.1007/s10898-010-9628-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-010-9628-3

Keywords

Navigation