Skip to main content
Log in

Alternating direction method for bi-quadratic programming

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Bi-quadratic programming (Bi-QP for short) was studied systematically in Ling et al. (SIAM J. Optim. 20:1286–1320, 2009) due to its various applications in engineering as well as optimization. Several approximation methods were given in the same paper since it is NP-hard. In this paper, we introduce a quadratic SDP relaxation of Bi-QP and discuss the approximation ratio of the method. In particular, by exploiting the favorite structure of the quadratic SDP relaxation, we propose an alternating direction method for solving such a problem and show that the method is globally convergent without any assumption. Some preliminary numerical results are reported which show the effectiveness of the method proposed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bomze, I.M., Ling, C, Qi, L., Zhang, X.: Standard bi-quadratic optimization problems and unconstrained polynomial reformulations. http://www.optimization-online.org/DB_HTML/2009/08/2369.html (2009)

  2. Bonnans J.F., Shapiro A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)

    Google Scholar 

  3. Cardoso J.F.: High-order contrasts for independent component analysis. Neural Comput. 11, 157–192 (1999)

    Article  Google Scholar 

  4. Chen G., Teboulle M.: A proximal-based decomposition method for convex minimization problems. Math. Program. 64, 81–101 (1994)

    Article  Google Scholar 

  5. Comon P.: Independent component analysis, a new concept?. Signal Process. 36, 287–314 (1994)

    Article  Google Scholar 

  6. Eckstein J., Bertsekas D.P.: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55, 293–316 (1992)

    Article  Google Scholar 

  7. Gabay D., Mercier B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximations. Comput. Math. Appl. 2, 17–40 (1976)

    Article  Google Scholar 

  8. Grigorascu V.S., Regalia P.A.: Tensor displacement structures and polyspectral matching. In: Kailath, T., Sayed, A.H. (eds) Fast Reliable Algorithms for Structured Matrices, SIAM, Philadelphia (1999)

    Google Scholar 

  9. Han D., Dai H.H., Qi L.: Conditions for strong ellipticity of anisotropic elastic materials. J. Elast. 97, 1–13 (2009)

    Article  Google Scholar 

  10. He B.S., Liao L.Z., Han D.R., Yang H.: A new inexact Alternating directions method for monotone variational inequalities. Math. Program. 92, 103–118 (2002)

    Article  Google Scholar 

  11. He S., Li Z., Zhang S.: Approximation algorithms for homogeneous polynomial optimization with quadratic constraints. Math. Program. 125, 353–383 (2010)

    Article  Google Scholar 

  12. Kontogiorgis S., Meyer R.R.: A variable-penalty alternating directions method for convex optimization. Math. Program. 83, 29–53 (1998)

    Google Scholar 

  13. Kofidis E., Regalia P.A.: On the best rank-1 approximation of higher-order supersymmetric tensors. SIAM J. Matrix Anal. Appl. 23, 863–884 (2002)

    Article  Google Scholar 

  14. Ling C., Nie J.W., Qi L., Ye Y.: Bi-quadratic optimization over unit spheres and semidefinite programming relaxations. SIAM J. Optim. 20, 1286–1310 (2009)

    Article  Google Scholar 

  15. Luo Z-Q., Zhang S.: A semidefinite relaxation scheme for multivariate quartic polynomial optimization with quadratic constraints. SIAM J. Optim. 20, 1716–1736 (2010)

    Article  Google Scholar 

  16. Pardalos P.M., Ramana M.: Semidefinite programming. In: Terlaky, T. (ed.) Interior Point methods of Mathematical Programming, pp. 369–398. Kluwer Academic Publishers, Dordrecht, The Netherlands (1996)

    Google Scholar 

  17. Pardalos, P.M., Wolkowicz, H. (eds): Topics in Semidefinite and Interior-Point Methods, Fields Institute Communications Series, vol. 18. American Mathematical Society, Providence, RI (1998)

    Google Scholar 

  18. Nikias C.L., Petropulu A.P.: Higher-Order Spectra Analysis, A Nonlinear Signal Processing Framework. Prentice-Hall, Englewood Cliffs, NJ (1993)

    Google Scholar 

  19. Qi L., Dai H.H., Han D.: Conditions for strong ellipticity. Front. Math. China. 4, 349–364 (2009)

    Article  Google Scholar 

  20. Shapiro A., Sun J.: Some Properties of the Augmented Lagrangian in Cone Constrained Optimization. Math. Oper. Res. 29, 479–491 (2004)

    Article  Google Scholar 

  21. Sturm J.F., Zhang S.: On cones of nonnegative quadratic functions. Math. Oper. Res. 28, 246–267 (2003)

    Article  Google Scholar 

  22. Shor N.Z.: Nondifferentiable Optimization and Polynomial Problems. Kluwer Academic Publishers, Dordrecht, The Netherlands (1998)

    Google Scholar 

  23. Sturm J.: Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones. Optim. Methods Softw. 11(12), 625–653 (1999)

    Article  Google Scholar 

  24. Sun J., Zhang S.: A modified alternating direction method for convex quadratically constrained quadratic semidefinite programs. Eur. J. Oper. Res. 207, 1210–1220 (2010)

    Article  Google Scholar 

  25. Thomson W.: Elements of a mathematical theory of elasticity. Philos. Trans. R. Soc. 166, 481 (1856)

    Article  Google Scholar 

  26. Thomson W.: Elasticity, Encyclopedia Briannica, 9th edn., vol. 7. Adam and Charles Black, London (1878)

    Google Scholar 

  27. Zhang T., Golub G.H.: Rank-one approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 23, 534–550 (2001)

    Article  Google Scholar 

  28. Zhang, X., Ling, C., Qi, L.: Semidefinite relaxation bounds for bi-quadratic optimization problems with quadratic constraints. J. Global Optim. (2010). doi:10.1007/s10898-010-9545-5

  29. Yu Z.S.: Solving semidefinite programming problems via alternating direction methods. J. Comput. Appl. Math. 193, 437–445 (2006)

    Article  Google Scholar 

  30. Yuan, X.M., Yang, J.F.: Sparse and low-rank matrix decomposition via alternative direction methods, Optimization Online (2009) http://www.optimization-online.org/DB_HTML/2009/11/2447.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Hai Huang.

Additional information

This work is partially supported by the National Natural Science Foundation of China (Grant No. 10871144).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, SL., Huang, ZH. Alternating direction method for bi-quadratic programming. J Glob Optim 51, 429–446 (2011). https://doi.org/10.1007/s10898-010-9635-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-010-9635-4

Keywords

Mathematics Subject Classification (2000)

Navigation