Skip to main content
Log in

An alternating variable method for the maximal correlation problem

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

The maximal correlation problem (MCP) aiming at optimizing correlations between sets of variables plays an important role in many areas of statistical applications. Up to date, algorithms for the general MCP stop at solutions of the multivariate eigenvalue problem (MEP), which serves only as a necessary condition for the global maxima of the MCP. For statistical applications, the global maximizer is quite desirable. In searching the global solution of the MCP, in this paper, we propose an alternating variable method (AVM), which contains a core engine in seeking a global maximizer. We prove that (i) the algorithm converges globally and monotonically to a solution of the MEP, (ii) any convergent point satisfies a global optimal condition of the MCP, and (iii) whenever the involved matrix A is nonnegative irreducible, it converges globally to the global maximizer. These properties imply that the AVM is an effective approach to obtain a global maximizer of the MCP. Numerical testings are carried out and suggest a superior performance to the others, especially in finding a global solution of the MCP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amri A., Seeger A.: Spectral analysis of coupled linear complementarity problems. Linear Alg. Appl. 432, 2507–2523 (2010)

    Article  Google Scholar 

  2. Browne P.J., Sleeman B.D.: A numerical technique for multiparameter eigenvalue problems. IMA J. Numer. Anal. 2, 451–457 (1982)

    Article  Google Scholar 

  3. Chu M.T., Watterson J.L.: On a multivariate eigenvalue problem: I. Algebraic theory and power method. SIAM J. Sci. Comput. 14, 1089–1106 (1993)

    Article  Google Scholar 

  4. Conn A.R., Gould N.I.M., Toint P.L.: Trust-Region Methods. SIAM, Philadelphia (2000)

    Book  Google Scholar 

  5. Fletcher R.: Practical Methods of Optimization, 2nd edn. Wiley, New York (1987)

    Google Scholar 

  6. Gill P., Murrary W., Wright M.H.: Practical Optimization. Academic Press, London (1981)

    Google Scholar 

  7. Golub G.H., Liao L.-Z.: Continuous methods for extreme and interior eigenvalue problems. Linear Alg. Appl. 415, 31–51 (2006)

    Article  Google Scholar 

  8. Hanafi M.,Ten Berge J.M.F.: Global optimality of the successive Maxbet algorithm. Psychometrika 68, 97–103 (2003)

    Article  Google Scholar 

  9. Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: an overview with application to learning methods. CSD-TR-03-02, University of London (2003)

  10. Horst P.: Relations among m sets of measures. Psychometrika 26, 129–149 (1961)

    Article  Google Scholar 

  11. Horst P.: Factor Analysis of Data Matrices. Holt Rinehart and Winston, New York (1965)

    Google Scholar 

  12. Hotelling H.: The most predictable criterion. J. Educ. Pyschol. 26, 139–142 (1935)

    Article  Google Scholar 

  13. Hotelling H.: Relations between two sets of variates. Biometrika 28, 321–377 (1936)

    Google Scholar 

  14. Kettenring J.R.: Canonical analysis of several sets of variables. Biometrika 58, 433–451 (1971)

    Article  Google Scholar 

  15. Martínez J.M.: Local minimizers of quadratic functions on Euclidean balls and spheres. SIAM J. Optim. 4, 159–176 (1994)

    Article  Google Scholar 

  16. Moré J.J., Sorensen D.C.: Computing a trust region step. SIAM J. Sci. Stat. Comput. 4, 553–572 (1983)

    Article  Google Scholar 

  17. Nesterov, Y.: Quality of semidefinite relaxation for nonconvex quadratic optimization. CORE Discussion Paper 9719, Université Catholique de Louvain, Belgium (1997)

  18. Nocedal J., Wright S.J.: Numerical Optimization. Springer, New York (2006)

    Google Scholar 

  19. Ten Berge J.M.F.: Generalized approaches to the MAXBET problem and the MAXDIFF problem, with applications to canonical correlations. Psychometrika 53, 487–494 (1988)

    Article  Google Scholar 

  20. Toh K.C., Todd M.J., Tutuncu R.H.: SDPT3—a Matlab software package for semidefinite programming. Optim. Methods Softw. 11, 545–581 (1999)

    Article  Google Scholar 

  21. Tutuncu R.H., Toh K.C., Todd M.J.: Solving semidefinite-quadratic-linear programs using SDPT3. Math. Program. Ser. B 95, 189–217 (2003)

    Article  Google Scholar 

  22. Vande Geer J.R.: Linear relations among k sets of variables. Psychometrika 49, 79–94 (1984)

    Article  Google Scholar 

  23. Van Noorden, T.L., Barkmeijer, J.: The multivariate eigenvalue problem: a new application, theory and a subspace accelerated power method. Universiteit Utrecht, preprint (2008)

  24. Zhang, L.-H., Chu, M.T.: Computing absolute maximum correlation. IMA J. Numer. Anal. (2011). doi:10.1093/imanum/DRQ029

  25. Zhang L.-H., Liao L.-Z., Sun L.-M.: Towards the global solution of the maximal correlation problem. J. Global Optim. 49, 91–107 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Zhi Liao.

Additional information

This research was supported in part by FRG grants from Hong Kong Baptist University and the Research Grant Council of Hong Kong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, LH., Liao, LZ. An alternating variable method for the maximal correlation problem. J Glob Optim 54, 199–218 (2012). https://doi.org/10.1007/s10898-011-9758-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-011-9758-2

Keywords

Mathematics Subject Classification (2000)

Navigation