Skip to main content
Log in

Common best proximity points: global minimization of multi-objective functions

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Given non-empty subsets A and B of a metric space, let \({S{:}A{\longrightarrow} B}\) and \({T {:}A{\longrightarrow} B}\) be non-self mappings. Due to the fact that S and T are non-self mappings, the equations Sx = x and Tx = x are likely to have no common solution, known as a common fixed point of the mappings S and T. Consequently, when there is no common solution, it is speculated to determine an element x that is in close proximity to Sx and Tx in the sense that d(x, Sx) and d(x, Tx) are minimum. As a matter of fact, common best proximity point theorems inspect the existence of such optimal approximate solutions, called common best proximity points, to the equations Sx = x and Tx = x in the case that there is no common solution. It is highlighted that the real valued functions \({x{\longrightarrow}d(x, Sx)}\) and \({x{\longrightarrow}d(x, Tx)}\) assess the degree of the error involved for any common approximate solution of the equations Sx = x and Tx = x. Considering the fact that, given any element x in A, the distance between x and Sx, and the distance between x and Tx are at least d(A, B), a common best proximity point theorem affirms global minimum of both functions \({x{\longrightarrow}d(x, Sx)}\) and \({x{\longrightarrow}d(x, Tx)}\) by imposing a common approximate solution of the equations Sx = x and Tx = x to satisfy the constraint that d(x, Sx) = d(x, Tx) = d(A, B). The purpose of this article is to derive a common best proximity point theorem for proximally commuting non-self mappings, thereby producing common optimal approximate solutions of certain simultaneous fixed point equations in the event there is no common solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Thagafi M.A., Shahzad N.: Convergence and existence results for best proximity points. Nonlinear Anal. 70(10), 3665–3671 (2009)

    Article  Google Scholar 

  2. Al-Thagafi M.A., Shahzad N.: Best proximity pairs and equilibrium pairs for Kakutani multimaps. Nonlinear Anal. 70(3), 1209–1216 (2009)

    Article  Google Scholar 

  3. Al-Thagafi, M.A., Shahzad, N.: Best proximity sets and equilibrium pairs for a finite family of multimaps. Fixed Point Theory Appl. 2008, Art. ID 457069, pp 10

  4. Anthony Eldred A., Veeramani P.: Existence and convergence of best proximity points. J. Math. Anal. Appl. 323, 1001–1006 (2006)

    Article  Google Scholar 

  5. Anthony Eldred A., Kirk W.A., Veeramani P.: Proximinal normal structure and relatively nonexpanisve mappings. Stud. Math. 171(3), 283–293 (2005)

    Article  Google Scholar 

  6. Anuradha J., Veeramani P.: Proximal pointwise contraction. Topol. Appl. 156(18), 2942–2948 (2009)

    Article  Google Scholar 

  7. Chinchuluun A., Pardalos P.M.: A survey of recent developments in multiobjective optimization. Ann. Oper. Res. 154, 29–50 (2007)

    Article  Google Scholar 

  8. Chinchuluun, A., Pardalos, P.M., Migdalas, A., Pitsoulis, L., Pareto optimality, game theory and equilibria. http://www.springer.com/mathematics/applications/book/978-0-387-77246-2, Springer (2008)

  9. Di Bari C., Suzuki T., Vetro C.: Best proximity points for cyclic Meir-Keeler contractions. Nonlinear Anal. 69(11), 3790–3794 (2008)

    Article  Google Scholar 

  10. Fan K.: Extensions of two fixed point theorems of F.E. Browder. Math. Z. 112, 234–240 (1969)

    Article  Google Scholar 

  11. Jungck G.: Commuting mappings and fixed points. Am. Math. Mon. 83, 261–263 (1976)

    Article  Google Scholar 

  12. Karpagam, S., Sushama A.,: Best proximity point theorems for p-cyclic Meir-Keeler contractions. Fixed Point Theory Appl. 2009, Art. ID 197308, pp 9

  13. Kim W.K., Kum S., Lee K.H.: On general best proximity pairs and equilibrium pairs in free abstract economies. Nonlinear Anal. 68(8), 2216–2222 (2008)

    Article  Google Scholar 

  14. Kirk W.A., Reich S., Veeramani P.: Proximinal retracts and best proximity pair theorems. Numer. Func. Anal. Optim. 24, 851–862 (2003)

    Article  Google Scholar 

  15. Pardalos P.M., Siskos Y., Zopounidis C.: Advances in Multicriteria Analysis. Kluwer, Dordrecht (1995)

    Google Scholar 

  16. Prolla, J.B.: Fixed point theorems for set valued mappings and existence of best approximations. Numer. Funct. Anal. Optim. 5, 449–455 (1982–1983)

    Google Scholar 

  17. Reich S.: Approximate selections, best approximations, fixed points and invariant sets. J. Math. Anal. Appl. 62, 104–113 (1978)

    Article  Google Scholar 

  18. Sadiq Basha S., Veeramani P.: Best approximations and best proximity pairs. Acta. Sci. Math. (Szeged) 63, 289–300 (1997)

    Google Scholar 

  19. Sadiq Basha S., Veeramani P.: Best proximity pair theorems for multifunctions with open fibres. J. Approx. Theory 103, 119–129 (2000)

    Article  Google Scholar 

  20. Sadiq Basha S., Veeramani P., Pai D.V.: Best proximity pair theorems. Indian J. Pure Appl. Math. 32, 1237–1246 (2001)

    Google Scholar 

  21. Sadiq Basha, S.: Best proximity points: global optimal approximate solution. J. Glob. Optim. (2010), doi:10.1007/s10898-009-9521-0

  22. Sadiq Basha S.: Extensions of Banach’s contraction principle. Numer. Funct. Anal. Optim. 31, 569–576 (2010)

    Article  Google Scholar 

  23. Sankar Raj V., Veeramani P.: Best proximity pair theorems for relatively nonexpansive mappings. Appl. Gene. Topol. 10(1), 21–28 (2009)

    Google Scholar 

  24. Sehgal V.M., Singh S.P.: A generalization to multifunctions of fan’s best approximation theorem. Proc. Amer. Math. Soc. 102, 534–537 (1988)

    Google Scholar 

  25. Sehgal V.M., Singh S.P.: A theorem on best approximations. Numer. Funct. Anal. Optim. 10, 181–184 (1989)

    Article  Google Scholar 

  26. Srinivasan P.S.: Best proximity pair theorems. Acta Sci. Math. (Szeged) 67, 421–429 (2001)

    Google Scholar 

  27. Vetrivel V., Veeramani P., Bhattacharyya P.: Some extensions of fan’s best approximation theorem. Numer. Funct. Anal. Optim. 13, 397–402 (1992)

    Article  Google Scholar 

  28. Wlodarczyk K., Plebaniak R., Banach A.: Best proximity points for cyclic and noncyclic set-valued relatively quasi-asymptotic contractions in uniform spaces. Nonlinear Anal. 70(9), 3332–3341 (2009)

    Article  Google Scholar 

  29. Wlodarczyk, K., Plebaniak, R., Banach, A.: Erratum to: Best proximity points for cyclic and noncyclic set-valued relatively quasi-asymptotic contractions in uniform spaces. Nonlinear Anal. 70 (2009) 3332–3341, doi:10.1016/j.na.2008.04.037. Nonlinear Anal. 71, 3583–3586 (2009)

    Google Scholar 

  30. Wlodarczyk K., Plebaniak R., Obczynski C.: Convergence theorems, best approximation and best proximity for set-valued dynamic systems of relatively quasi-asymptotic contractions in cone uniform spaces. Nonlinear Anal. 72, 794–805 (2010)

    Article  Google Scholar 

  31. Zopounidis C., Pardalos P.M.: Handbook of Multicriteria Analysis. Springer, Berlin (2010)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sadiq Basha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadiq Basha, S. Common best proximity points: global minimization of multi-objective functions. J Glob Optim 54, 367–373 (2012). https://doi.org/10.1007/s10898-011-9760-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-011-9760-8

Keywords

Navigation