Skip to main content
Log in

Correlative sparsity structures and semidefinite relaxations for concave cost transportation problems with change of variables

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We present a hierarchy of semidefinite programming (SDP) relaxations for solving the concave cost transportation problem (CCTP), which is known to be NP-hard, with p suppliers and q demanders. In particular, we study cases in which the cost function is quadratic or square-root concave. The key idea of our relaxation methods is in the change of variables to CCTPs, and due to this, we can construct SDP relaxations whose matrix variables are of size O((min {p, q}) ω) in the relaxation order ω. The sequence of optimal values of SDP relaxations converges to the global minimum of the CCTP as the relaxation order ω goes to infinity. Furthermore, the size of the matrix variables can be reduced to O((min {p, q})ω-1), ω ≥  2 by using Reznick’s theorem. Numerical experiments were conducted to assess the performance of the relaxation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altiparmak F., Karaoglan I.: An adaptive tabu-simulated annealing for concave cost transportation problems. J. Oper. Res. Soc. 59(3), 331–341 (2008)

    Article  Google Scholar 

  2. Blair J.R.S., Peyton B.: An introduction to chordal graphs and clique trees. In: George, A., Gilbert, J.R., Liu, J.W.H. (eds.) Graph Theory and Sparse Matrix Computation, volume 56 of IMA Volumes in Mathematics and its Applications, pp. 1–29. Springer, Berlin (1993)

    Chapter  Google Scholar 

  3. Floudas C.A., Pardalos P.M., Adjiman C.S., Esposito W.R., Gumus Z.H., Harding S.T., Klepeis J.L., Meyer C.A., Schweiger C.A.: Handbook of Test Problems in Local and Global Optimization. Kluwer, Dordrecht (1999)

    Book  Google Scholar 

  4. Fukuda M., Kojima M., Murota K., Nakata K.: Exploiting sparsity in semidefinite programming via matrix completion. I: General framework. SIAM J. Optim. 11(3), 647–674 (2000)

    Article  Google Scholar 

  5. Fukunaga A.S.: A branch-and-bound algorithm for hard multiple knapsack problems. Ann. Oper. Res. 184(1), 97–119 (2011)

    Article  Google Scholar 

  6. Gallo G., Sandi C., Sodini C.: An algorithm for the min concave cost flow problem. Eur. J. Oper. Res. 4(4), 248–255 (1980)

    Article  Google Scholar 

  7. George A., Liu J.W.H.: Computer Solutions of Large Sparse Positive Definite Systems. Prentice Hall, Englewood Cliffs (1981)

    Google Scholar 

  8. Grimm D., Netzer T., Schweighofer M.: A note on the representation of positive polynomials with structured sparsity. Arch. Math. 89(5), 399–403 (2007)

    Article  Google Scholar 

  9. Guisewite G.M., Pardalos P.M.: Minimum concave cost network flow problems: applications, complexity, and algorithms. Ann. Oper. Res. 25(1), 75–100 (1990)

    Article  Google Scholar 

  10. Guisewite G.M., Pardalos P.M.: Global search algorithms for minimum concave-cost network flow problems. J. Global. Optim. 1(4), 309–330 (1991)

    Article  Google Scholar 

  11. Horst R., Thoai N.V.: An integer concave minimization approach for the minimum concave cost capacitated flow problem on networks. OR Spectrum 20(1), 47–53 (1998)

    Article  Google Scholar 

  12. Kim S., Kojima M., Toint P.: Recognizing underlying sparsity in optimization. Math. Program. Ser. A 119, 273–303 (2009)

    Article  Google Scholar 

  13. Kojima M., Kim S., Waki H.: Sparsity in sums of squares of polynomials. Math. Program. Ser. A 103, 45–62 (2005)

    Article  Google Scholar 

  14. Kojima M., Muramatsu M.: A note on sparse SOS and SDP relaxations for polynomial optimization problems over symmetric cones. Comput. Optim. Appl. 42(1), 31–41 (2009)

    Article  Google Scholar 

  15. Kuno T., Utsunomiya T.: A Lagrangian based branch-and-bound algorithm for production-transportation problems. J. Global. Optim. 18(1), 59–73 (2000)

    Article  Google Scholar 

  16. Lamar B.W.: An improved branch and bound algorithm for minimum concave cost network flow problems. J. Global. Optim. 3(3), 261–287 (1993)

    Article  Google Scholar 

  17. Larsson T., Migdalas A., Ronnqvist M.: A Lagrangean heuristic for the capacitated concave minimum cost network flow problem. Eur. J. Oper. Res. 78(1), 116–129 (1994)

    Article  Google Scholar 

  18. Lasserre J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2001)

    Article  Google Scholar 

  19. Lasserre J.B.: Convergent SDP-relaxations in polynomial optimization with sparsity. SIAM J. Optim. 17(3), 822–843 (2006)

    Article  Google Scholar 

  20. Laurent M.: Sums of squares, moment matrices and optimization over polynomials. In: Putinar, M., Sullivant, S. (eds.) Emerging Applications of Algebraic Geometry, volume 149 of IMA Volumes in Mathematics and its Applications, pp. 157–270. Springer, Berlin (2009)

    Chapter  Google Scholar 

  21. Mittelmann H.D.: An independent benchmarking of SDP and SOCP solvers. Math. Program. Ser. B 95(2), 407–430 (2003)

    Article  Google Scholar 

  22. Nakata M., Braams B.J., Fujisawa K., Fukuda M., Percus J.K., Yamashita M., Zhao Z.: Variational calculation of second-order reduced density matrices by strong N-representability conditions and an accurate semidefinite programming solver. J. Chem. Phys. 128, 164113 (2008)

    Article  Google Scholar 

  23. Parrilo P.A.: Semidefinite programming relaxations for semialgebraic problems. Math. Program. Ser. B 96, 293–320 (2003)

    Article  Google Scholar 

  24. Pisinger D.: An exact algorithm for large multiple knapsack problems. Eur. J. Oper. Res. 114(3), 528–541 (1999)

    Article  Google Scholar 

  25. Reznick B.: Extremal PSD forms with few terms. Duke Math. J. 45, 363–374 (1978)

    Article  Google Scholar 

  26. Strum J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11(1–4), 625–653 (1999)

    Article  Google Scholar 

  27. Tuy H., Ghannadan S., Migdalas A., Värbrand P.: A strongly polynomial algorithm for a concave production-transportation problem with a fixed number of nonlinear variables. Math. Program. 72(3), 229–258 (1996)

    Article  Google Scholar 

  28. Waki H., Kim S., Kojima M., Muramatsu M.: Sums of squares and semidefinite programming relaxations for polynomial optimization problems with structured sparsity. SIAM J. Optim. 17(1), 218–242 (2006)

    Article  Google Scholar 

  29. Waki H., Kim S., Kojima M., Muramatsu M., Sugimoto H.: Algorithm 883: SparsePOP: a sparse semidefinite programming relaxation of polynomial optimization problems. ACM Trans. Math. Softw. 35(2), 1–13 (2008)

    Article  Google Scholar 

  30. Yamashita, M., Fujisawa, K., Nakata, K., Nakata, M., Fukuda, M., Kobayashi, K., Goto, K.: A high-performance software package for semidefinite programs: SDPA 7. Research Report B-460, Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, (2009)

  31. Yan S., Luo S.-C.: Probabilistic local search algorithms for concave cost transportation network problems. Eur. J. Oper. Res. 117(3), 511–521 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiko Mizutani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mizutani, T., Yamashita, M. Correlative sparsity structures and semidefinite relaxations for concave cost transportation problems with change of variables. J Glob Optim 56, 1073–1100 (2013). https://doi.org/10.1007/s10898-012-9924-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-012-9924-1

Keywords

Navigation