Skip to main content

Advertisement

Log in

Multi-objective optimization by learning automata

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

This paper presents a novel method of multi-objective optimization by learning automata (MOLA) to solve complex multi-objective optimization problems. MOLA consists of multiple automata which perform sequential search in the solution domain. Each automaton undertakes dimensional search in the selected dimension of the solution domain, and each dimension is divided into a certain number of cells. Each automaton performs a continuous search action, instead of discrete actions, within cells. The merits of MOLA have been demonstrated, in comparison with a multi-objective evolutionary algorithm based on decomposition (MOEA/D) and non-dominated sorting genetic algorithm II (NSGA-II), on eleven multi-objective benchmark functions and an optimal problem in the midwestern American electric power system which is integrated with wind power, respectively. The simulation results have shown that MOLA can obtain more accurate and evenly distributed Pareto fronts, in comparison with MOEA/D and NSGA-II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abido M.A.: Environmental/economic power dispatch using multiobjective evolutionary algorithms. IEEE Trans. Power Syst. 18(4), 1529–1537 (2003)

    Article  Google Scholar 

  2. Aghaebrahimi M.R., Zahiri S.H., Amiri M.: Data mining using learning automata. World Acad. Sci. Eng. Technol. 49, 343–351 (2009)

    Google Scholar 

  3. Aghaebrahimi M.R., Zahiri S.H., Amiri M.: A new method for multiobjective optimization based on learning automata. World Acad. Sci. Eng. Technol. 25, 312–315 (2009)

    Google Scholar 

  4. Ai Q., Gu C.H.: Economic operation of wind farm integrated system considering voltage stability. Renew. Energy 34(3), 608–614 (2009)

    Article  Google Scholar 

  5. Atkinson R.C., Bower G.H., Crothers E.J.: An Introduction to Mathematical Learning Theory. Wiley, New York (1965)

    Google Scholar 

  6. Bharathi, R., Kumar, M.J., Sunitha, D., Premalatha, S.: Optimization of combined economic and emission dispatch problem—a comparative study. In: Proceedings of IPEC 2007 International Power Engineering Conference, pp. 134–139 (2007)

  7. Bridle, J.S.: Training stochastic modal recognition algorithms as networks can lead to maximum mutual information estimates of parameters. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 211–217. Morgan Kaufmann, San Mateo, CA (1989)

  8. Bush R.R., Mosteller F.: Stochastic Models for Learning. Wiley, New York (1958)

    Google Scholar 

  9. Canyurt O.E., Hajela P.: Cellular genetic algorithm technique for the multicriterion design optimization. Struct. Multidiscipl. Optim. 40, 201–214 (2010)

    Article  Google Scholar 

  10. Caponio, A., Neri, F.: Integrating cross-dominance adaptation in multi-objective memetic algorithms. In: Ong, Y.S., Tan, K.C., Goh C.K. (eds.) Multi-Objective Memetic Algorithms, Studies in Computational Intelligence, vol. 171, pp. 325–351 (2009)

  11. Chen Z., Spooner E.: Grid power quality with variable speed wind turbines. IEEE Trans. Energy Convers. 16(2), 148–154 (2001)

    Article  Google Scholar 

  12. Deb K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley, UK (2001)

    Google Scholar 

  13. Deb K., Agrawal S., Pratap A., Meyarivan T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  14. Dubois-Lacoste, J., Lopez-Ibanez, M., Stutzle, T.: Combining two search paradigms for multi-objective optimization: two-phase and pareto local search. Technical report no. TR/IRIDIA/2012-004, Universite Libre de Bruxelles (2012)

  15. Feijdo A.E., Cidris J.: Modeling of wind farms in the load flow analysis. IEEE Trans. Power Syst. 15(1), 110–115 (2000)

    Article  Google Scholar 

  16. Fonseca, C.M., Fleming, P.J.: On the performance assessment and comparison of stochastic multiobjective optimizers. In: Lecture Notes in Computer Science, Proceedings of the 4th International Conference on Parallel Problem Solving from Nature, pp. 584–593. Springer, Berlin, Germany (1996)

  17. Goh C.K., Tan K.C., Liu D.S., Chiam S.C.: A competitive and cooperative co-evolutionary approach to multi-objective particle swarm optimization algorithm design. Eur. J. Oper. Res. 202(1), 42–54 (2010)

    Article  Google Scholar 

  18. Guo, Y.F., Keedwell, E.C., Walters, G.A., Khu, S.T.: Hybridizing cellular automata principles and NSGAII for multi-objective design of urban water networks. In: Proceedings of the 4th International Conference on Evolutionary Multi-criterion Optimization, EMO’07, pp. 546–559. Springer, Berlin, Heidelberg (2007)

  19. Ha, L.T., Saha, T.K.: Investigation of power loss and voltage stability limits for large wind farm connections to a subtransmission network. In: Proceedings of IEEE Power engineering society general meeting, pp. 2251–2256 (2004)

  20. Howell M.N., Frost G.P., Gordon T.J., Wu Q.H.: Continuous action reinforcement learning applied to vehicle suspension control. Mechatronics 7(3), 263–276 (1997)

    Article  Google Scholar 

  21. Karakas, A., Kocatepe, C., Li, F.X.: A new multi-objective optimization technique for generation dispatch. In: Proceedings of North American Power Symposium (NAPS), 2009, pp. 1–6 (2009)

  22. Knowles, J.: A summary-attainment-surface plotting method for visualizing the performance of stochastic multiobjective optimizers. In: Proceedings of the 5th International Conference on Intelligent Systems Design and Applications, pp. 552–557 (2005)

  23. Konak A., Coit D.W., Smith A.E.: Multi-objective optimization using genetic algorithms: a tutorial. Reliab. Eng. Syst. Saf. 91(9), 992–1007 (2006)

    Article  Google Scholar 

  24. Kruskal W.H., Wallis W.A.: Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 47(260), 583–621 (1952)

    Article  Google Scholar 

  25. Lee, B.H., Lee, K.Y.: Application of s-model learning automata for multi-objective optimal operation of power systems. In: IEE Proceedings of Generation, Transmission and Distribution, vol. 152, pp. 295–300 (2005)

  26. Li H., Zhang Q.: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 12(2), 284–302 (2009)

    Article  Google Scholar 

  27. Liao, H.L., Wu, Q.H.: Multi-objective optimization by reinforcement learning for power system dispatch and voltage stability. In: Proceedings of IEEE PES Conference on Innovative Smart Grid Technologies Europe, pp. 1–8, Sweden (2010)

  28. Liefooghe, A., Paquete, L., Simoes, M., Figueira, J.R.: Connectedness and local search for bicriteria knapsack problems. In: Proceedings of the 11th European Conference on Evolutionary Computation in Combinatorial Optimisation, pp. 48–59 (2011)

  29. Marsh C., Gordon T.J., Wu Q.H.: Application of learning automata to controller design in slow-active automobile suspensions. Veh. Syst. Dyn. 24(8), 597–616 (1995)

    Article  Google Scholar 

  30. Masazade E., Rajagopalan R., Varshney P.K., Mohan C.K., Sendur G.K., Keskinoz M.: A multiobjective optimization approach to obtain decision thresholds for distributed detection in wireless sensor networks. IEEE Trans. Syst. Man Cybern. Part B Cybern. 40(2), 444–457 (2010)

    Article  Google Scholar 

  31. Moscato P.: On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms. Report 826, Caltech Concurrent Computation Program (1989)

  32. Narendra K.S., Thathachar M.A.: Learning automata—an introduction. Prentice Hall, Englewood Cliffs (1989)

    Google Scholar 

  33. Smith J.E.: Coevolving memetic algorithms: a review and progress report. IEEE Trans. Syst. Man Cybern. Part B 37(1), 6–17 (2007)

    Article  Google Scholar 

  34. Song Z., Kusiak A.: Multiobjective optimization of temporal processes. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 40(3), 845–856 (2010)

    Article  Google Scholar 

  35. Sutton R.S., Barto A.G.: Reinforcement Learning: An Introduction, pp. 170. The MIT Press, a Bradford Book, Cambridge (1998)

    Google Scholar 

  36. Thathachar M.A.L., Sastry P.S.: Networks of Learning Automata: Techniques for Online Stochstic Optimization. Kluwer, Dordrecht (2004)

    Book  Google Scholar 

  37. Tsetlin M.L.: Automaton Theory and Modeling of Biological Systems, vol. 102 in Mathematics in Science and Engineering. Academic Press, New York (1973)

    Google Scholar 

  38. Veldhuizen, D.A.V., Lamont, G.B.: Evolutionary Computation and Convergence to a Pareto Front. Morgan Kaufmann, Stanford University, California (1998)

  39. Veldhuizen, D.A.V., Lamont, G.B.: Multiobjective evolutionary algorithm research: a history and analysis (1998)

  40. Wu Q.H., Cao Y.J.: Dispatching. In: John G., Webster (ed.) Encyclopaedia of Electrical and Electronics Engineering., Wiley, NY (1999)

    Google Scholar 

  41. Wu, Q.H., Liao, H.L.: Function optimization by reinforcement learning for power system dispatch and voltage stability. In: Proceedings of IEEE Power & Energy Society General Meeting, Minneapolis, USA (2010)

  42. Wu, Q.H., Lu, Z., Li, M.S., Ji, T.Y.: Optimal placement of FACTS devices by a group search optimizer with multiple producers. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 1033–1039 (2008)

  43. Zhang Q.F., Li H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  44. Zhang, Q.F., Suganthan, P.N.: Final report on CEC’09 MOEA competition. Technical report, the School of CS and EE, University of Essex, UK and School of EEE, Nangyang Technological University, Singapore. http://dces.essex.ac.uk/staff/qzhang/moeacompetition09.htm (2009)

  45. Zhang, Q., Liu, W., Li, H.: The performance of a new version of MOEA/D on cec09 unconstrained MOP test instances. Working report ces-491, School of CS & EE, University of Essex (2009)

  46. Zitzler E., Thiele L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. H. Wu.

Additional information

The work presented in this paper was partially funded by Guangdong Innovation Team Program, Guangdong, China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, H.L., Wu, Q.H. Multi-objective optimization by learning automata. J Glob Optim 55, 459–487 (2013). https://doi.org/10.1007/s10898-012-9973-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-012-9973-5

Keywords

Navigation