Skip to main content

Advertisement

Log in

A canonical duality approach for the solution of affine quasi-variational inequalities

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We propose a new formulation of the Karush–Kunt–Tucker conditions of a particular class of quasi-variational inequalities. In order to reformulate the problem we use the Fisher–Burmeister complementarity function and canonical duality theory. We establish the conditions for a critical point of the new formulation to be a solution of the original quasi-variational inequality showing the potentiality of such approach in solving this class of problems. We test the obtained theoretical results with a simple heuristic that is demonstrated on several problems coming from the academy and various engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aussel, D., Correa, R., Marechal, M.: Gap functions for quasivariational inequalities and generalized nash equilibrium problems. J. Optim. Theory Appl. 3(151), 474–488 (2011)

    Article  MathSciNet  Google Scholar 

  2. Baiocchi, C., Capelo, A.: Variational and Quasivariational Inequalities: Applications to Free Boundary Problems. Wiley, New York (1984)

    MATH  Google Scholar 

  3. Chan, D., Pang, J.-S.: The generalized quasi-variational inequality problem. Math. Oper. Res. 7, 211–222 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. Academic Press, New York (1992)

    MATH  Google Scholar 

  5. Dirkse, S.P., Ferris, M.C.: The PATH solver: A non-monotone stabilization scheme for mixed complementarity problems. Optim. Methods Softw. 5, 123–156 (1995)

    Article  Google Scholar 

  6. Dreves, A., Facchinei, F., Kanzow, C., Sagratella, S.: On the solution of the KKT conditions of generalized Nash equilibrium problems. SIAM J. Optim. 21, 1082–1108 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. Siam, Philadelphia (1976)

    MATH  Google Scholar 

  8. Facchinei, F., Kanzow, C., Sagratella, S.: Solving quasi-variational inequalities via their KKT conditions. Math. Prog. Ser. A (2013). doi:10.1007/s10107-013-0637-0

  9. Facchinei, F., Kanzow, C., Sagratella, S.: QVILIB: a library of quasi-variational inequality test problems. Pac. J. Optim. 9, 225–250 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, Volumes I and II. Springer, New York (2003)

    Google Scholar 

  11. Fukushima, M.: A class of gap functions for quasi-variational inequality problems. J. Ind. Manag. Optim. 3, 165–171 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fukushima, M.: Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems. Math. Prog. 53, 99110 (1992)

    Article  MathSciNet  Google Scholar 

  13. Gao, D.Y.: Duality Principles in Nonconvex Systems: Theory, Methods and Applications. Kluwer, Dordrecht (2000)

    Book  Google Scholar 

  14. Gao, D.Y.: Canonical dual transformation method and generalized triality theory in nonsmooth global optimization. J. Glob. Optim. 17(1/4), 127–160 (2000)

    Article  MATH  Google Scholar 

  15. Gao, D.Y.: Canonical duality theory: theory, method, and applications in global optimization. Comput. Chem. 33, 1964–1972 (2009)

    Article  Google Scholar 

  16. Gao, D.Y., Ruan, N., Pardalos, P.M.: Canonical dual solutions to sum of fourth-order polynomials minimization problems with applications to sensor network localization. In: Pardalos, P.M., Ye, Y.Y., Boginski, V., Commander, C. (eds.) Sensors: Theory, Algorithms and Applications. Springer, (2010)

    Google Scholar 

  17. Harms, N., Hoheisel T., Kanzow, C.: On a smooth dual gap function for a class of quasi-variational inequalities. Preprint 318, Institute of Mathematics, University of Würzburg, Würzburg, March 2013

  18. Harms, N., Kanzow, C., Stein, O.: Smoothness Properties of a Regularized Gap Function for Quasi-Variational Inequalities. Preprint 313, Institute of Mathematics, University of Würzburg, Würzburg, March (2013)

  19. Kanzow, C.: Some noninterior continuation methods for linear complementarity problems. SIAM J. Matrix Anal. Appl. 17, 851–868 (1996)

  20. Latorre, V., Gao, D.Y.: Canonical dual solution to nonconvex radial basis neural network optimization problem. Neurocomputing (2013, to appear)

  21. Latorre, V., Gao, D.Y.: Canonical duality for solving general nonconvex constrained problems. Optim. Lett. (2013, Submitted) preprint available at http://arxiv.org/pdf/1310.2014

  22. Mosco, U.: Implicit variational problems and quasi variational inequalities. In: Gossez, J., Lami Dozo, E. (eds.) Nonlinear Operators and the Calculus of Variations. Lecture Notes in Mathematics, vol. 543, pp. 83–156. Springer, Berlin (1976)

  23. Nesterov, Y., Scrimali, L.: Solving strongly monotone variational and quasi-variational inequalities. CORE Discussion Paper 2006/107, Catholic University of Louvain, Center for Operations Research and Econometrics (2006)

  24. Noor, M.A.: On general quasi-variational inequalities. J. King Saud Univ. 24, 81–88 (2012)

    Article  Google Scholar 

  25. Outrata, J., Kocvara, M.: On a class of quasi-variational inequalities. Optim. Methods Softw. 5, 275–295 (1995)

    Article  Google Scholar 

  26. Outrata, J., Kocvara, M., Zowe, J.: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints. Kluwer Academic Publishers, Dordrecht and Boston (1998)

    Book  MATH  Google Scholar 

  27. Pang, J.-S., Fukushima, M.: Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games. Comput. Manag. Sci. 2, 21–56 (2005) (Erratum: ibid 6, 373–375 (2009))

  28. Ruan, N., Gao, D.Y.: Global optimal solutions to a general sensor network localization problem. Perform. Eval. (2013, to appear) published online at http://arxiv.org/submit/654731

  29. Ryazantseva, I.P.: First-order methods for certain quasi-variational inequalities in Hilbert space. Comput. Math. Math. Phys. 47, 183–190 (2007)

    Article  MathSciNet  Google Scholar 

  30. Scrimali, L.: Quasi-variational inequality formulation of the mixed equilibrium in mixed multiclass routing games. CORE Discussion Paper 2007/7, Catholic University of Louvain, Center for Operations Research and Econometrics, January 2007

  31. Wang, Z.B., Fang, S.C., Gao, D.Y., Xing, W.X.: Canonical dual approach to solving the maximum cut problem. J. Glob. Optim. 54, 341–352 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang, J., Gao, D.Y., Yearwood, J.: A novel canonical dual computational approach for prion AGAAAAGA amyloid fibril molecular modeling. J. Theor. Biol. 284, 149–157 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vittorio Latorre.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latorre, V., Sagratella, S. A canonical duality approach for the solution of affine quasi-variational inequalities. J Glob Optim 64, 433–449 (2016). https://doi.org/10.1007/s10898-014-0236-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-014-0236-5

Keywords

Navigation