Skip to main content
Log in

A new alternating direction method for linearly constrained nonconvex optimization problems

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper, we study the classical nonconvex linearly constrained optimization problem. Under some mild conditions, we obtain that the penalization sequence is nonincreasing and the sequence generated by our algorithm has finite length. Based on the assumption that the objective functions have Kurdyka–Lojasiewicz property, we prove the convergence of the algorithm. We also show the numerical efficiency of our method by the concrete applications in the areas of image processing and statistics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Attouch, H., Bolte, J.: On the convergence of the proximal algorithm for nonsmooth functions involving analytic features. Math. Program. 116, 5–16 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka-Łojasiewicz inequality. Math. Oper. Res. 35, 438–457 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods. Math. Program. 137, 91–129 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Auslender, A.: Asymptotic properties of the Fenchel dual functional and applications to decomposition problems. J. Optim. Theory Appl. 73, 427–449 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Auslender, A., Teboulle, M., Ben-Tiba, S.: Coupling the logarithmic-quadratic proximal method and the block nonlinear Gauss–Seidel algorithm for linearly constrained convex minimization. In: Thera, M., Tichastschke, R. (eds.) Lecture Notes in Economics and Mathematical Systems, vol. 477, pp. 35–47 (1998)

  6. Bolte, J., Daniilidis, A., Lewis, A.: The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM J. Optim. 17, 1205–1223 (2006)

    Article  MathSciNet  Google Scholar 

  7. Bolte, J., Daniilidis, A., Lewis, A.: A nonsmooth Morse-Sard theorem for subanalytic functions. J. Math. Anal. Appl. 321, 729–740 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bolte, J., Daniilidis, A., Lewis, A., Shiota, M.: Clarke subgradients of stratifiable functions. SIAM J. Optim. 18, 556–572 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math. Program. 146, 459–494 (2014)

    Article  MathSciNet  Google Scholar 

  10. Fukushima, M.: Application of the alternating direction method of multipliers to separable convex programming problems. Comput. Optim. Appl. 1, 93–111 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variatinal problems via finite-element approximations. Comput. Math. Appl. 2, 17–40 (1976)

    Article  MATH  Google Scholar 

  12. Glowinski, R. (ed.): Numerical Methods for Nonlinear Variational Problems. Springer, New York (1984)

    MATH  Google Scholar 

  13. Han, D.R., He, H.J., Xu, L.L.: A proximal parallel splitting method for minimizing sum of convex functions with linear constraints. J. Comput. Appl. Math. 256, 36–51 (2014)

    Article  MathSciNet  Google Scholar 

  14. Han, D.R., Sun, W.Y.: A new modified Goldstein-Levitin-Polyak projection method for variational inequality problems. Comput. Math. Appl. 47, 1817–1825 (2005)

    Article  MathSciNet  Google Scholar 

  15. Han, D.R., Yuan, X.M., Zhang, W.X.: An augmented-lagrangian-based parallel splitting method for separable convex minimization with applications to image processing. Math. Comp. 83, 2263–2291 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Han, D.R., Yuan, X.M., Zhang, W.X., Cai, X.J.: An ADM-based splitting method for separable convex programming. Comput. Optim. Appl. 54, 343–369 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. He, B.S.: A Goldsteins type projection method for a class of variant variational inequalities. J. Comput. Math. 17, 425–434 (1999)

    MathSciNet  MATH  Google Scholar 

  18. He, B.S., Liao, L.Z., Han, D.R., Yang, H.: A new inexact alternating direction method for monotone variational inequalities. Math. Program. 92, 103–118 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. He, B.S., Liao, L.Z., Qian, M.J.: Alternating projection based prediction-correction method for structured variatinoal inequalities. J. Comput. Math. 24, 693–710 (2006)

    MathSciNet  MATH  Google Scholar 

  20. He, B.S., Yang, H.: Some convergence properties of a method of multipliers for linearly constrained monotone variational inequalities. Oper. Res. Lett. 23, 151–161 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. He, B.S., Yang, H., Wang, S.L.: Alternating direction method with self-adaptive penalty parameters for monotone variational inequalities. J. Optim. Theory Appl. 106, 337–356 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Łojasiewicz, S.: Une propriété topologique des sous-ensembles analytiques réels. Les Équatioons aux Dérivées Partielles, pp. 87–89. Éditions du centre National de la Recherche Scientifique, Paris (1963)

    Google Scholar 

  23. Łojasiewicz, S.: Sur la géométrie semi- et sous-analytique. Ann. Inst. Fourier 43, 1575–1595 (1993)

    Article  MATH  Google Scholar 

  24. Martinet, B.: Regularisation d\(^{\prime }\)inequations variationelles par approximations succesives. Revue Francaise d’Informatique et de Recherche operationnelle 4, 154–159 (1970)

    MathSciNet  MATH  Google Scholar 

  25. Nocedal, J., Wright, S.J. (eds.): Numerical Optimization, 2nd edn. Spriger, New York (2006)

    MATH  Google Scholar 

  26. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  27. Teboulle, M.: Convergence of proximal-like algorithms. SIAM J. Optim. 7, 1069–1083 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tseng, P.: Convergence of a block coordinate descent method for nondifferentiable minimization. J. Optim. Theory Appl. 109, 475–494 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, X.Y., Li, S.J., Kou, X.P.: An extension of subgradient method for variational inequality problems in Hilbert space. Abstr. Appl. Anal (2013). doi:10.1155/2013/531912

  30. Wang, Y.J., Xiu, N.H., Zhang, J.Z.: Modified extragradient method for variational inequalities and verification of solution existance. J. Optim. Theory Appl. 119, 167–183 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Xue, D., Sun, W.Y., Qi, L.Q.: An alternating structured trust region algorithm for separable optimization problems with nonconvex constraints. Comput. Optim. Appl. 57, 365–386 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yau, A.C., Tai, X.C., Ng, M.K.: \(L_o\)-norm and total variation for wavelet inpainting. In: Tai, X.C., et al. (eds.) Scale Space and Variational Method in Computer Vision, pp. 539–551. Springer, Voss (2009)

  33. Zhang, W.X., Han, D.R., Yuan, X.M.: An efficient simultaneous method for the constrained multiple-sets split feasibility problem. Comput. Optim. Appl. 52, 825–843 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Grants number: 11171362, 11301567 and 11401058), Specialized Research Fund for the Doctoral Program of Higher Education (Grant number: 20120191110031), the Technology Project of Chongqing Education Committee (Grant number: KJ130732), and the Research Start Project of Chongqing Technology and Business University (Grant number: 2012-56-04). The authors thank the anonymous reviewers for their valuable comments and suggestions, which helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X.Y., Li, S.J., Kou, X.P. et al. A new alternating direction method for linearly constrained nonconvex optimization problems. J Glob Optim 62, 695–709 (2015). https://doi.org/10.1007/s10898-015-0268-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-015-0268-5

Keywords

Navigation