Skip to main content
Log in

Solutions of parametric complementarity problems monotone with respect to parameters

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In many applied problems (such as, e.g., elasto-hydrodynamic lubrication problem, some economic equilibrium problems, etc.), one of the important question is if certain complementarity problem’s solution is monotone with respect to parameters. Our paper investigates this question and provides several sufficient conditions that guarantee such a monotonicity of the solutions to linear and nonlinear complementarity problems with parameters. In the majority of cases, it is required that the principal mapping of the complementarity problem be monotone by decision variables and, vice versa, antitone with respect to parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maier, G.: Problem—on parametric linear complementarity problems. SIAM Rev 14, 364–365 (1972)

    Article  Google Scholar 

  2. Cottle, R.W.: Monotone solutions in parametric linear complementarity problems. Math. Program. 3, 210–224 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  3. Megiddo, N.: On monotonicity in parametric linear complementarity problems. Math. Program. 12, 60–66 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  4. Megiddo, N.: On the parametric nonlinear complementarity problem. Math. Program. Study 17, 142–150 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kostreva, M.M.: Elasto-hydrodynamic lubrication: a nonlinear complementarity problem. Int. J. Numer. Methods Fluids 4, 377–397 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ferris, M.C., Pang, J.-S.: Engineering and economic applications of complementarity problems. SIAM Rev. 39, 669–713 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kalashnikov, V.V., Bulavsky, V.A., Kalashnykova, N.I., Castillo, F.J.: Mixed oligopoly with consistent conjectures. Eur. J. Oper. Res. 210(3), 729–735 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kalashnikov, V.V., Bulavsky, V.A., Kalashnikov Jr, V.V., Kalashnykova, N.I.: Structure of demand and consistent conjectural variations equilibrium (CCVE) in a mixed oligopoly model. Ann. Oper. Res. 217(1), 281–297 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kopel, M., Lamantia, F., Szidarovszky, F.: Evolutionary competition in a mixed market with socially concerned firms. J. Econ. Dyn. Control 48, 394–406 (2014)

    Article  MathSciNet  Google Scholar 

  10. Lambertini, L., Tampieri, A.: Incentives, performance and desirability of socially responsible firms in a Cournot oligopoly. Econ. Model. 50, 40–48 (2015)

    Article  Google Scholar 

  11. Dempe, S., Kalashnikov, V.V., Pérez-Valdés, G.A., Kalashnykova, N.I.: Bilevel Programming Problems. Theory, Algorithms and Applications to Energy Networks. Springer, Berlin (2015)

    MATH  Google Scholar 

  12. Isac, G., Bulavsky, V.A., Kalashnikov, V.V.: Complementarity, Equilibrium, Efficiency and Economics. Kluwer, Dordrecht (2002)

    Book  MATH  Google Scholar 

  13. Berman, A., Plemmons, D.: Nonnegative Matrices in Mathematical Sciences. Academic Press, New York (1979)

    MATH  Google Scholar 

  14. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)

    MATH  Google Scholar 

  15. Isac, G.: Complementarity Problems (Lecture Notes in Mathematics, No. 1528). Springer, Berlin (1992)

  16. Kalashnikov, V.V.: Existence and uniqueness theorems for nonlinear complementarity problems. Optimization (Novosibirsk) 45(62), 17–27 (1989). (in Russian)

    Google Scholar 

  17. Lankaster, P.: Theory of Matrices. Academic Press, New York (1969)

    Google Scholar 

Download references

Acknowledgments

The research activity of the authors was financially supported by the Research Department of the Instituto Tecnológico y de Estudios Superiores de Monterrey (ITESM), Campus Monterrey, and by the SEP-CONACYT Project CB-2013-01-221676, Mexico. The second author was also supported by the PAICYT Project No. CE250-09 and by the SEP-CONACYT Project CB-2009-01-127691. We’d like to express our profound gratitude to the anonymous reviewer for her/his quite valuable and helpful comments. We hope that the presentation has been essentially improved thanks to those suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vyacheslav V. Kalashnikov.

Appendix

Appendix

1.1 Proof of Theorem 3

Proof

Let \(u\ge v\). Consider the well-defined solutions x(u) and x(v) to problem (10) for the parameter vectors u and v, respectively. We will now show that \(x_i(u)\le x_i(v)\) for every \(i=1,\ldots ,n\). Split the set of indices into subsets: \(I=I(u)=\{i:x_i(u)>0\}\) and \(J=J(u)=\{1,\ldots ,n\} \setminus I\). Now it is to consider three different cases similar to the proof of Theorem 2.

  1. 1.

    Let i belong to \(J=\{1,2,\ldots n\}\setminus I\), that is \(x_i(u)= 0\). However, \(x_i(v)\ge 0\) by definition, hence \(x_i(u)\le x_i(v)\).

  2. 2.

    Now consider the subset \(I=I(u)\). We will show that \(x_i(u)\le x_i(v)\), too. For \(i\in I\), the following relationships hold:

    $$\begin{aligned}&A_{II}x_I(u)+B_{II}u+\varphi _I(x(u),u)= 0; \end{aligned}$$
    (34)
    $$\begin{aligned}&A_{II}x_I(v)+B_{II}v+\varphi _I(x(v),v)\ge 0, \end{aligned}$$
    (35)

    where \(A_{II},B_{II}\) are the square submatrices of the matrices A and B with the elements \(a_{ij},b_{ij},i,j,\in I\), respectively; \(x_I\) and \(\varphi _I\) are the corresponding subvectors of the vectors x and \(\varphi \), respectively. Subtract (34) from (35) and come to

    $$\begin{aligned}&A_{II}x_I(v)+B_{II}v+\varphi _I\left( x(v),v\right) -A_{II}x_I(u)-B_{II}u\\&\quad -\varphi _I\left( x(u),u\right) \ge 0; \end{aligned}$$

    hence

    $$\begin{aligned}&A_{II}\left[ x_I(v)-x_I(u)\right] +B_{II}(v-u)\nonumber \\&\quad +\left[ \varphi _I\left( x(v),v\right) -\varphi _I\left( x(u),u\right) \right] \ge 0. \end{aligned}$$
    (36)

Examine the last term of the left-hand side of inequality (36):

$$\begin{aligned}&\varphi _I\left( x(v),v\right) -\varphi _I\left( x(u),u\right) \\&\quad =\int \limits _0^1\varphi ^{\prime }_I\left( x(u)+t\left( x(v)-x(u) \right) ,u+t(v-u)\right) \\&\quad \quad \times \left[ x(v)-x(u),v-u\right] dt\\&\quad =\int \limits _0^1\varphi ^{\prime }_I\left( x(u)+t\left( x(v)-x(u) \right) ,u+t(v-u)\right) \,dt\\&\quad \quad \times \left[ x(v)-x(u),v-u\right] \\&\quad =\int \limits _0^1\varphi ^{\prime }_{I,x}\left( x(u)+t\left( x(v)-x(u)\right) , u+t(v-u)\right) \,dt\\&\quad \quad \times \left[ x(v)-x(u)\right] \\&\quad \quad +\int \limits _0^1\varphi ^{\prime }_{I,u}\left( x(u)+t\left( x(v)-x(u)\right) , u+t(v-u)\right) \,dt\cdot (v-u). \end{aligned}$$

For convenience purpose, introduce the following notation:

$$\begin{aligned} \varPhi ^{\prime }_{I,x}=\int \limits _0^1\varphi ^{\prime }_{I,x}\left( x(u)+t\left( x(v)-x(u)\right) ,u+t(v-u)\right) \,dt \end{aligned}$$

and

$$\begin{aligned} \varPhi ^{\prime }_{I,u}=\int \limits _0^1\varphi ^{\prime }_{I,u}\left( x(u)+t\left( x(v)-x(u)\right) ,u+t(v-u)\right) \,dt. \end{aligned}$$

Denote by T the submatrix of matrix \(\varPhi ^{\prime }_{I,x}\), that consists of elements with the same subsets of indices of rows and columns: \(T=\varPhi ^{\prime }_{I,x_I}\); and by H the submatrix that comprises the elements of the matrix \(\varPhi ^{\prime }_{I,x}\) with the complementary subsets of indices of rows and columns, i.e., \(H=\varPhi ^{\prime }_{I,x_J}\). Then

$$\begin{aligned} \varphi _I\left( x(v),v\right) -\varphi _I\left( x(u),u\right)= & {} \varPhi ^{\prime }_{I,x}\cdot \left[ x(v)-x(u)\right] + \varPhi ^{\prime }_{I,u}\cdot (v-u)\nonumber \\= & {} T\cdot \left[ x_I(v)-x_I(u)\right] +H\cdot \left[ x_J(v)-x_J(u)\right] + \varPhi ^{\prime }_{I,u}\cdot (v-u)\nonumber \\= & {} T\cdot \left[ x_I(v)-x_I(u)\right] +H\cdot x_J(v)+\varPhi ^{\prime }_{I,u}\cdot (v-u). \end{aligned}$$
(37)

By substituting (37) into (36) we get

$$\begin{aligned}&A_{II}\left[ x_I(v)-x_I(u)\right] +B_{II}(v-u)+T\cdot \left[ x_I(v)-x_I(u)\right] \\&\quad +H\cdot x_J(v)+\varPhi ^{\prime }_{I,u}\cdot (v-u)\ge 0, \end{aligned}$$

or

$$\begin{aligned}&\left( A_{II}+T\right) \cdot \left[ x_I(v)-x_I(u)\right] \ge -B_{II}(v-u)-H\cdot x_J(v)\nonumber \\&\quad - \varPhi ^{\prime }_{I,u}\cdot (v-u). \end{aligned}$$
(38)

Consider each term of the right-hand side of inequality (38) separately. If \(u\ge v,\) then \(-B_{II}(v-u)\ge 0\). Furthermore, as the function \(\varphi \) is monotone with respect to parameters, it implies that \(-\varPhi ^{\prime }_{u,I}\cdot (v-u)\ge 0\). At last, since \(\varphi ^{\prime }_x\) is a positive definite M -matrix and \(\varPhi ^{\prime }_{I,x_J}\) contains only non-positive non-diagonal elements, we come to \(-H\cdot x_J(v)\ge 0\). Thus, we have shown the non-negativity of the right-hand side of (38); therefore

$$\begin{aligned} \left( A_{II}+T\right) \cdot \left[ x_I(v)-x_I(u)\right] \ge 0. \end{aligned}$$
(39)

First, assertion (iii) of Lemma 3 implies that the submatrix T is a positive definite M-matrix, and second, assertion (ii) of the same Lemma 3 guarantees that the sum of positive definite M-matrices \(\left( A_{II}+T\right) \) is also an M-matrix. Now making use of the properties of M-matrices, left-multiply both sides of inequality (39) by the matrix \(\left( A_{II}+T\right) ^{-1}\). Since all entries of the latter matrix are nonnegative, we obtain \(x_I(v)-x_I(u)\ge 0\). Hence \(x_I(u)\le x_I(v)\), that is, if \(x_i(u)>0\) then \(x_i(v)\ge x_i(u)\), which completes the proof. \(\square \)

1.2 Proof of Theorem 4

Proof

The proof mainly follows the steps of that of Theorem 2. In more detail, here we again consider two m-vectors of parameters uv, \(u\ge v\), and the corresponding solutions x(u) and x(v) to problem (21). We have to show that \(x_i(u)\ge x_i(v)\) for each \(i=1,\ldots ,n\). Similar to the proof of Theorem 2, here we partition the set of indices into the following subsets:

$$\begin{aligned} I=I(u)=\{i:x_i(u)>0\} \end{aligned}$$

and

$$\begin{aligned} J=J(u)=\{i:1,\ldots ,n\}\setminus I, \end{aligned}$$

and then consider three different cases similar to those in the proof of Theorem 2.

  1. 1.

    If \( S={I(u)\cap I(v)}\), then \(A_{SS}x_S+\varphi _S(u)=0\), where \(A_{SS}\) is a square submatrix of the matrix A with elements \(a_{ij}, \ i,j\in S\). In this case, the solution of problem (21) can be represented in the explicit from: \(x_S=-A^{-1}_{SS}\varphi _S(u)\), where \(A^{-1}_{SS}=\left( \alpha _{ij}\right) _{i\in S,j\in S}\ge 0\).

    Rewrite \(x_i(u)\) and \(x_i(v)\) as follows:

    $$\begin{aligned} x_i(u)=-\sum _{j\in S}\alpha _{ij}\varphi _j(u),\ x_i(v)=-\sum _{j\in S} \alpha _{ij}\varphi _j(v). \end{aligned}$$

    Evaluate the difference:

    $$\begin{aligned} x_i(u)-x_i(v)=-\sum _{j\in S}\alpha _{ij}\left[ \varphi _j(u)-\varphi _j(v)\right] . \end{aligned}$$

    As the function \(\varphi \) is antitone, it implies \(\varphi _j(u)- \varphi _j(v) \le 0\), \(j\in S\). Therefore, \(x_i(u)-x_i(v)\ge 0\), i.e. \(x_i(u)\ge x_i(v)\).

  2. 2.

    For \(i\in I(u)\setminus I(v)\), one has \(x_i(u)>0,\ x_i(v)=0\), which implies \(x_i(u)>x_i(v)\).

  3. 3.

    Let \(i\in J(u)\), that is, \(x_i(u)=0\). Now we show that \(x_i(v)=0\), too, i.e., \(J(u)\subseteq J(v)\).

    Consider the set \(L={J(u)\cap I(v)}\). Assume that \(L\ne \emptyset \). The latter implies

    $$\begin{aligned}&A_{LL}x_L(v)+\varphi _L(v)=0, \end{aligned}$$
    (40)
    $$\begin{aligned}&A_{LL}x_L(u)+\varphi _L(u)\ge 0. \end{aligned}$$
    (41)

    Rewrite (40) and (41) in the following form:

    $$\begin{aligned}&\sum _{k\in L}a_{\ell k}x_k(v)+\varphi _\ell (v)=0,\ \ \ell \in L, \end{aligned}$$
    (42)
    $$\begin{aligned}&\sum _{k\in L}a_{\ell k}x_k(u)+\varphi _\ell (u)\ge 0,\ \ell \in L, \end{aligned}$$
    (43)

    respectively.

    Since \(u\ge v\) and the function \(\varphi \) is antitone, the inequality \( \varphi _\ell (u)\le \varphi _\ell (v)\) holds. Subtract (42) from (43) to deduce

    $$\begin{aligned} \sum _{k\in L}a_{\ell k}\left[ x_k(u)-x_k(v)\right] +\left[ \varphi _\ell (u)- \varphi _\ell (v)\right] \ge 0,\ \ell \in L. \end{aligned}$$
    (44)

    By the definition of the subset L, we have \(x_k(u)=0\), \(\forall k\in L\). Next, as \(\varphi \) is antitone, the difference \([\varphi _\ell (u)-\varphi _\ell (v)]\) is non-positive. Hence

    $$\begin{aligned} \sum _{k\in L}a_{\ell k}x_k(v)\le \left[ \varphi _\ell (u)-\varphi _\ell (v) \right] \le 0,\ \ell \in L, \end{aligned}$$
    (45)

    which implies the following inequality

    $$\begin{aligned} A_{LL}x_L(v)\le 0. \end{aligned}$$
    (46)

Since each principal submatrix \(A_{LL}\) of an M-matrix A is also an M-matrix [cf., Lemma 3, assertion (iii)], we can left-multiply both sides of (46) by the nonnegative matrix \(A^{-1}_{LL} \ge 0\) and obtain the following relationship: \(A^{-1}_{LL}A_{LL}x_L(v)=x_L (v)\le 0\). This inequality contradicts our assumption \(x_L(v)>0\). Therefore, \(x_i(u)=0\) implies \(x_i(v)=0\), thus \(u\ge v\) implies \(x(u)\ge x(v)\), which completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalashnikov, V.V., Kalashnykova, N.I. & Castillo-Pérez, F.J. Solutions of parametric complementarity problems monotone with respect to parameters. J Glob Optim 64, 703–719 (2016). https://doi.org/10.1007/s10898-015-0369-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-015-0369-1

Keywords

Navigation