Skip to main content
Log in

Approximability of the minimum-weight k-size cycle cover problem

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

The cycle cover problem is a combinatorial optimization problem, which is to find a minimum cost cover of a given weighted digraph by a family of vertex-disjoint cycles. We consider a special case of this problem, where, for a fixed number k, all feasible cycle covers are restricted to be of the size k. We call this case the minimum weight k-size cycle cover problem (Min-k-SCCP). Since each cycle in a cover can be treated as a tour of some vehicle visiting an appropriate set of clients, the problem in question is closely related to the vehicle routing problem. Moreover, the studied problem is a natural generalization of the well-known traveling salesman problem (TSP), since the Min-1-SCCP is equivalent to the TSP. We show that, for any fixed \(k>1\), the Min-k-SCCP is strongly NP-hard in the general setting. The Metric and Euclidean special cases of the problem are intractable as well. Also, we prove that the Metric Min-k-SCCP belongs to APX class and has a 2-approximation polynomial-time algorithm, even if k is not fixed. For the Euclidean Min-2-SCCP in the plane, we present a polynomial-time approximation scheme extending the famous result obtained by S. Arora for the Euclidean TSP. Actually, for any fixed \(c>1\), the scheme finds a \((1+1/c)\)-approximate solution of the Euclidean Min-2-SCCP in \(O(n^3(\log n)^{O(c)})\) time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. We call a cycle C empty if C is a loop.

  2. Other cases can be considered similarly.

References

  1. Arora, S.: Polynomial-time approximation schemes for euclidean traveling salesman and other geometric problems. J. ACM 45, 753–782 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baburin, A., Della Croce, F., Gimadi, E.K., Glazkov, Y.V., Paschos, V.T.: Approximation algorithms for the 2-peripatetic salesman problem with edge weights 1 and 2. Discrete Appl. Math. 157(9), 1988–1992 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bektas, T.: The multiple traveling salesman problem: an overview of formulations and solution procedures. Omega 34, 209–219 (2006). doi:10.1016/j.omega.2004.10.004

    Article  Google Scholar 

  4. Bläser, M., Manthey, B.: Approximating maximum weight cycle covers in directed graphs with weights zero and one. Algorithmica 42, 121–139 (2005). doi:10.1007/s00453-004-1131-0

    Article  MathSciNet  MATH  Google Scholar 

  5. Bläser, M., Manthey, B., Sgall, J.: An improved approximation algorithm for the asymmetric TSP with strengthened triangle inequality. J. Discrete Algorithms 4, 623–632 (2006). doi:10.1016/j.jda.2005.07.004

    Article  MathSciNet  MATH  Google Scholar 

  6. Bläser, M., Siebert, B.: Computing cycle covers without short cycles. In: Algorithms ESA 2001, pp. 368–379. Springer, Berlin (2001)

  7. Chandran, L.S., Ram, L.S.: On the relationship between ATSP and the cycle cover problem. Theor. Comput. Sci. 370, 218–228 (2007). doi:10.1016/j.tcs.2006.10.026

    Article  MathSciNet  MATH  Google Scholar 

  8. Christofides, N.: Worst-case analysis of a new heuristic for the traveling salesman problem. In: Symposium on New Directions and Recent Results in Algorithms and Complexity, p. 441 (1975)

  9. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms, 2nd edn. McGraw-Hill Higher Education, New York (2001)

    MATH  Google Scholar 

  10. Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Manag. Sci. 6(1), 80–91 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  11. De Kort, J.: Lower bounds for symmetric k-peripatetic salesman problems. Optimization 20, 113–122 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Finkel, R.A., Bentley, J.L.: Quad trees: a data structure for retrieval on composite keys. Acta Inf. 4, 1–9 (1974). doi:10.1007/BF00288933

    Article  MATH  Google Scholar 

  13. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)

    MATH  Google Scholar 

  14. Gimadi, E.: Asymptotically optimal algorithm for finding one and two edge-disjoint traveling salesman routes of maximal weight in euclidean space. Proc. Steklov Inst. Math. 263, S57–S67 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Golden, B., Raghavan, S., Wasil, E.A.: The Vehicle Routing Problem: Latest Advances and New Challenges. Operations Research/Computer Science Interfaces Series, vol. 43. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  16. Jung, H.: Über die kleinste kugel, die eine räumliche figur einschliesst. J. Reine Angew. Math. 123, 241–257 (1901)

    MathSciNet  MATH  Google Scholar 

  17. Krarup, J.: The peripatetic salesman and some related unsolved problems. In: Roy, B. (ed.) Combinatorial Programming: Methods and Applications, pp. 173–178. Springer, Netherlands (1975)

  18. Kumar, S., Panneerselvam, R.: A survey on the vehicle routing problem and its variants. Intell. Inf. Manag. 4, 66–74 (2012). doi:10.4236/iim.2012.43010

    Google Scholar 

  19. Manthey, B.: On approximating restricted cycle covers. SIAM J. Comput. 38, 181–206 (2008). doi:10.1137/060676003

    Article  MathSciNet  MATH  Google Scholar 

  20. Manthey, B.: Minimum-weight cycle covers and their approximability. Discrete Appl. Math. 157, 1470–1480 (2009). doi:10.1016/j.dam.2008.10.005

    Article  MathSciNet  MATH  Google Scholar 

  21. Papadimitriou, C.: Euclidean TSP is NP-complete. Theor. Comput. Sci. 4(3), 237–244 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sahni, S., Gonzales, T.: P-complete approximation problems. J. ACM 23, 555–565 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  23. Szwarcfiter, J., Wilson, L.: The cycle cover problem. Tech. Rep. 131, University of Newcastle upon Tyne (1979)

  24. Toth, P., Vigo, D. (eds.): The Vehicle Routing Problem. Society for Industrial and Applied Mathematics, Philadelphia (2001)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Science Foundation under Grant No. 14-11-00109.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Khachay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khachay, M., Neznakhina, K. Approximability of the minimum-weight k-size cycle cover problem. J Glob Optim 66, 65–82 (2016). https://doi.org/10.1007/s10898-015-0391-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-015-0391-3

Keywords

Navigation