Skip to main content
Log in

Saddle point approach to solving problem of optimal control with fixed ends

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In a Hilbert space, the problem of terminal control with linear dynamics and fixed ends of the trajectory is considered. The integral objective functional has a quadratic form. In contrast to the traditional approach, the problem of terminal control is interpreted not as an optimization problem, but as a saddle-point problem. The solution to this problem is a saddle point of the Lagrange function with components in the form of controls, phase and conjugate trajectories. A saddle-point method is proposed, the convergence of the method in all components of the solution is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Scalar products and norms are defined, respectively, as

    $$\begin{aligned}&\langle x(\cdot ),y(\cdot )\rangle = \int _{t_0}^{t_1}\langle x(t),y(t)\rangle dt,\; \Vert x(\cdot )\Vert ^2= \int _{t_0}^{t_1} |x(t)|^2dt,\\&\hbox {where }\;\langle x(t),y(t)\rangle = \sum \limits _{1}^{n} x_i(t)y_i(t), \; |x(t)|^2=\sum \limits _{1}^{n} x^2_i(t),\quad t_0\le t\le t_1,\\&x(t)=(x_1(t),\dots ,x_n(t))^\mathrm {T}, \; y(t)=(y_1(t),\dots ,y_n(t))^\mathrm {T} \end{aligned}$$

    .

  2. See the proof below.

References

  1. Antipin, A.S.: Saddle point problem and optimization problem as a single system. Trudy instituta Matematiki i mekhaniki UrO RAN 14(2), 5–15 (2008). [in Russian]

    MathSciNet  Google Scholar 

  2. Antipin, A.S.: Extra-proximal methods for solving two-person nonzero-sum games. Math. Progr. Ser. B 120, 147–177 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Antipin, A.S.: Equilibrium programming: models and methods for solving. Izvestiya IGU. Matematika. 2(1), 8–36 (2009). [in Russian]

    Google Scholar 

  4. Antipin, A.S.: Two-person game with Nash equilibrium in optimal control problems. Optim. Lett. 6(7), 1349–1378 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Antipin, A.S.: Terminal control of boundary models. Comput. Math. Math. Phys. 54(2), 275–302 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Antipin, A.S., Khoroshilova, E.V.: On extragradient type methods for solving optimal control problems with linear constraints. Izvestiya IGU, Matematika 3(3), 2–20 (2010). [in Russian]

    MathSciNet  Google Scholar 

  7. Antipin, A.S., Khoroshilova, E.V.: On a boundary-value problem of terminal control with a quadratic quality criterion. Izvestiya IGU, Matematika 3(8), 7–28 (2014). [in Russian]

    Google Scholar 

  8. Antipin, A.S., Khoroshilova, E.V.: Multicriteria boundary value problem in dynamics. Trudy instituta Matematiki i mekhaniki UrO RAN. 21(3), 20–29 (2015). [in Russian]

    Google Scholar 

  9. Antipin, A.S., Khoroshilova, E.V.: Optimal control with related initial and terminal conditions. Proceedings of the Steklov Institute of Mathematics 289(Suppl. 1), 9–25 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Antipin, A.S., Khoroshilova, E.V.: Linear programming and dynamics. Ural Math. J. 1(1), 3–18 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Antipin A., Vasilieva, O.: Augmented Lagrangian Method for Optimal Control Problems. In book: Analysis, Modeling, Optimization, and Numerical Techniques, Springer Proceedings in Mathematics and Statistics (2015)

  12. Gornov, A.Y., Tyatyushkin, A.I., Finkelstein, E.A.: Numerical methods for solving applied optimal control problems. Comput. Math. Math. Phys. 53(12), 1825–1838 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ioffe, A.D., Tikhomirov, V.M.: Theory of Extremal Problems. North-Holland Publishing Company, Amsterdam (1979)

    Google Scholar 

  14. Khoroshilova, E.V.: Extragradient method of optimal control with terminal constraints. Autom. Remote Control 73(3), 517–531 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Khoroshilova, E.V.: Extragradient-type method for optimal control problem with linear constraints and convex objective function. Optim. Lett. 7(6), 1193–1214 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kolmogorov, A.N., Fomin, S.V.: Elements of the theory of functions and functional analysis, 7th edn. FIZMATLIT, Moscow (2009)

    MATH  Google Scholar 

  17. Chinchuluun, A., Pardalos, P.M., Enkhbat, R., Tseveendorj, I. (Eds.): Optimization and Optimal Control, theory and Applications, vol. 39. Springer, New York (2010)

  18. Chinchuluun, A., Pardalos, P.M., Migdalas, A., Pitsoulis, L. (Eds.): Pareto Optimality, Game Theory and Equilibria. Springer Optimization and Its Applications, vol. 17. Springer, New York (2008)

  19. Polyak, B.T.: Convexity of the reachable set of nonlinear systems under \(L_2\) bounded controls. Report No. 2. Institut Mittag-Leffler, Sweden (2002/2003)

  20. Stewart, D.E.: Dynamics with Inequalities. Impacts and Hard Constraints, p. 544. SIAM, Philadelphia (2013)

    Google Scholar 

  21. Vasiliev, F.P.: Optimization Methods: In 2 books, 1053. MCCME, Moscow (2011). [in Russian]

  22. Vasiliev, F.P., Khoroshilova, E.V.: Extragradient method of finding a saddle point in optimal control problem. Vestnik Moskovskogo universiteta. Ser. 15. Vychisl. matem. i kibern 3, 18–23 (2010). in Russian

    Google Scholar 

  23. Vasiliev, F.P., Khoroshilova, E.V., Antipin, A.S.: Regularized extragradient method of finding a saddle point in optimal control problem. Trudy Instituta matematiki i mekhaniki UrO RAN. 17(1), 27–37 (2011). [in Russian]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly Antipin.

Additional information

The work was carried out with financial support from the Russian Foundation for Basic Research (Project No. 15–01–06045-a) and from the Ministry of Education and Science of the Russian Federation in the framework of Increase Competitiveness Program of NUST MISiS (Agreement 02.A03.21.0004).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antipin, A., Khoroshilova, E. Saddle point approach to solving problem of optimal control with fixed ends. J Glob Optim 65, 3–17 (2016). https://doi.org/10.1007/s10898-016-0414-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-016-0414-8

Keywords

Navigation