Skip to main content
Log in

Covers and approximations in multiobjective optimization

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Due to the growing interest in approximation for multiobjective optimization problems (MOPs), a theoretical framework for defining and classifying sets representing or approximating solution sets for MOPs is developed. The concept of tolerance function is proposed as a tool for modeling representation quality. This notion leads to the extension of the traditional dominance relation to \(t\hbox {-}\)dominance. Two types of sets representing the solution sets are defined: covers and approximations. Their properties are examined in a broader context of multiple solution sets, multiple cones, and multiple quality measures. Applications to complex MOPs are included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Angel, E., Bampis, E., Gourves, L.: Approximating the Pareto curve with local search for the bicriteria TSP (1,2) problem. Theor. Comput. Sci. 310(1–3), 135–146 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Angel, E., Bampis, E., Gourves, L.: Approximation algorithms for the bi-criteria weighted max-cut problem. Discrete Appl. Math. 154(12), 1685–1692 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Angel, E., Bampis, E., Kononov, A.: On the approximate tradeoff for bicriteria batching and parallel machine scheduling problems. Theor. Comput. Sci. 306(1–3), 319–338 (2003)

    Article  MATH  Google Scholar 

  4. Bazgan, C., Hugot, H., Vanderpooten, D.: Implementing an efficient fptas for the 0–1 multi-objective knapsack problem. Eur. J. Oper. Res. 198(1), 47–56 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bazgan, C., Jamain, F., Vanderpooten, D.: Approximate Pareto sets of minimal size for multi-objective optimization problems. Oper. Res. Lett. 43(1), 1–6 (2015)

    Article  MathSciNet  Google Scholar 

  6. Coello, C.A.C., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-objective Problems. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  7. Dandurand, B., Guarneri, P., Fadel, G., Wiecek, M.M.: Bilevel multiobjective packaging optimization for automotive design. Struct. Multidiscipl. Optim. 50(4), 663–682 (2014)

    Article  MathSciNet  Google Scholar 

  8. Diakonikolas, I., Yannakakis, M.: Small approximate Pareto sets for bi-objective shortest paths and other problems. SIAM J. Comput. 39(4), 1340–1371 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Efremov, R.V., Kamenev, G.K.: Properties of a method for polyhedral approximation of the feasible criterion set in convex multiobjective problems. Ann. Oper. Res. 166(1), 271–279 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ehrgott, M.: Approximation algorithms for combinatorial multicriteria optimization problems. Int. Trans. Oper. Res. 7(1), 5–31 (2000)

    Article  MathSciNet  Google Scholar 

  11. Ehrgott, M., Johnston, R.: Optimisation of beam directions in intensity modulated radiation therapy planning. OR Spectr. 25, 251–264 (2003)

    Article  MATH  Google Scholar 

  12. Ehrgott, M., Wiecek, M.M.: Multiobjective programming. In: Figueira, J., Greco, S., Ehrgott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys, pp. 667–722. Springer, New York (2005)

    Chapter  Google Scholar 

  13. Engau, A., Wiecek, M.M.: Cone characterizations of approximate solutions in real-vector optimization. J. Optim. Theory Appl. 134(3), 499–513 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Erlebach, T., Kellerer, H., Pferschy, U.: Approximating multiobjective knapsack problems. Manag. Sci. 48(12), 1603–1612 (2002)

    Article  MATH  Google Scholar 

  15. Faulkenberg, S.L., Wiecek, M.M.: On the quality of discrete representations in multiple objective programming. Optim. Eng. 11(3), 423–440 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gardenghi, M., Gómez, T., Miguel, F., Wiecek, M.M.: Algebra of efficient sets for multiobjective complex systems. J. Optim. Theory Appl. 149(2), 385–410 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Goel, T., Vaidyanathan, R., Haftka, R.T., Shyy, W., Queipo, N.V., Tucker, K.: Response surface approximation of Pareto optimal front in multi-objective optimization. Comput. Methods Appl. Mech. Eng. 196, 879–893 (2007)

    Article  MATH  Google Scholar 

  18. Goh, C.J., Yang, X.Q.: Analytic efficient solution set for multi-criteria quadratic programs. Eur. J. Oper. Res. 92(1), 166–181 (1996)

    Article  MATH  Google Scholar 

  19. Gomez, T., Gonzalez, M., Luque, M., Miguel, M., Ruiz, F.: Multiple objectives decomposition coordination methods for hierarchical organizations. Eur. J. Oper. Res. 133(2), 323–341 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Guarneri, P., Wiecek, M.M.: Pareto-based negotiation in distributed multidisciplinary design. Struct. Multidiscipl. Optim. (2015). doi:10.1007/s00158-015-1348-3

    Google Scholar 

  21. Haftka, R.T., Watson, L.T.: Multidisciplinary design optimization with quasiseparable subsystems. Optim. Eng. 6(1), 9–20 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hansen, P.: Bicriterion path problems. In: Fandel, G., Gal, T. (eds.) Multiple Criteria Decision Making: Theory and Applications, pp. 109–127. Springer, Berlin (1980)

    Chapter  Google Scholar 

  23. Hartikainen, M., Miettinen, K., Wiecek, M.M.: Constructing a Pareto front approximation for decision making. Math. Methods Oper. Res. 73(2), 209–234 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hartikainen, M., Miettinen, K., Wiecek, M.M.: PAINT: Pareto front interpolation for nonlinear multiobjective optimization. Comput. Optim. Appl. 52(3), 845–867 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Helbig, S., Pateva, D.: On several concepts for \(\varepsilon \text{- }\)efficiency. OR Spectr. 16(2), 179–186 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  26. Henig, M.I.: The domination property in multicriteria optimization. J. Math. Anal. Appl. 114, 7–16 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hong, S.P., Chung, S.J., Park, B.H.: A fully polynomial bicriteria approximation scheme for the constrained spanning tree problem. Oper. Res. Lett. 32(3), 233–239 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Huang, C.H., Galuski, J., Bloebaum, C.L.: Multi-objective Pareto concurrent subspace optimization for multidisciplinary design. AIAA J. 45(8), 1894–1906 (2007)

    Article  Google Scholar 

  29. Hunt, B.J., Blouin, V.Y., Wiecek, M.M.: Relative importance of design criteria: a preference modeling approach. J. Mech. Des. 129(9), 907–914 (2007)

    Article  Google Scholar 

  30. Hunt, B.J., Wiecek, M.M., Hughes, C.: Relative importance of criteria in multiobjective programming: a cone-based approach. Eur. J. Oper. Res. 207(2), 936–945 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Jilla, C.D., Miller, D.W.: Multi-objective, multidisciplinary design optimization methodology for distributed satellite systems. J. Spacecr. Rockets 41, 39–50 (2004)

    Article  Google Scholar 

  32. Kang, N., Kokkolaras, M., Papalambros, P.Y.: Solving multiobjective optimization problems using quasi-separable MDO formulations and analytical target cascading. Struct. Multidiscipl. Optim. (2014). doi:10.1007/s00158-014-1144-5

    MathSciNet  Google Scholar 

  33. Klimova, O.N., Noghin, V.D.: Using interdependent information on the relative importance of criteria in decision making. Comput. Math. Math. Phys. 46(12), 2178–2190 (2006)

    Article  MathSciNet  Google Scholar 

  34. Koltun, V., Papadimitriou, C.: Approximately dominating representatives. Theor. Comput. Sci. 371(3), 148–154 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kutateladze, S.S.: Convex \(\varepsilon \text{- }\)programming. Sov. Math. Doklady 20(2), 391–393 (1979)

    MATH  Google Scholar 

  36. Laumanns, M., Zenklusen, R.: Stochastic convergence of random search methods to fixed size Pareto front approximations. Eur. J. Oper. Res. 213(2), 414–421 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Legriel J., Guernic C.L., Cotton S., & Maler O.: Approximating the Pareto front of the multi-criteria optimization problems. In: 19th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS), pp. 69–83 (2010)

  38. Loridan, P.: \(\varepsilon \)-solutions in vector minimization problems. J. Optim. Theory Appl. 43(2), 265–276 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  39. Manthey, B.: On approximating multicriteria TSP. ACM Trans. Algorithms 8(2), 1–18 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Martin, J., Bielza, C., Insua, D.R.: Approximating nondominated sets in continuous multiobjective optimization problems. Naval Res. Logist. 52(5), 469–480 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  41. Myung, Y.-S., Kim, H.-G., Tcha, D.-W.: A bi-objective uncapacitated facility location problem. Eur. J. Oper. Res. 100(3), 608–616 (1997)

    Article  MATH  Google Scholar 

  42. Naderi, B., Aminnayeri, M., Piri, M., Haeri Yazdi, M.H.: Multi-objective no-wait flowshop scheduling problems: models and algorithms. Int. J. Prod. Res. 50(10), 2592–2608 (2012)

    Article  Google Scholar 

  43. Noghin, V.D.: Relative importance of criteria: a quantitative approach. J. Multicrit. Decis. Anal. 6(6), 355–363 (1997)

    Article  MATH  Google Scholar 

  44. Office of Naval Research: Special Notice 13-SN-0009 Special Program Announcement for 2013 Office of Naval Research Research Opportunity: Computational Methods for Decision Making (2013). http://www.onr.navy.mil/. Accessed May 2015

  45. Papadimitriou C.H., Yannakakis M.: On the approximability of trade-offs and optimal access of web sources. In: Proceedings 41st Annual Symposium on Foundations of Computer Science, pp. 86–92 (2000)

  46. Peri, D., Campana, E.F.: Multidisciplinary design optimization of a naval surface combatant. J. Ship Res. 47, 1–12 (2003)

    Google Scholar 

  47. Roy, B., Figueira, J.R., Almeida-Dias, J.: Discriminating thresholds as a tool to cope with imperfect knowledge in multiple criteria decision aiding: theoretical results and practical issues. Omega 43(11), 9–20 (2014)

    Article  Google Scholar 

  48. Roy, B., Vincke, Ph: Relational systems of preference with one or more pseudo-criteria: some new concepts and results. Manag. Sci. 30(11), 1323–1335 (1984)

    Article  MATH  Google Scholar 

  49. Ruzika, S., Wiecek, M.M.: Survey paper: approximation methods in multiobjective programming. J. Optim. Theory Appl. 126(3), 473–571 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  50. Sawaragi, Y., Nakayama, H., Tanino, T.: Theory of Multiobjective Optimization. Academic Press, Orlando (1985)

    MATH  Google Scholar 

  51. Sayin, S.: Measuring the quality of discrete representations of efficient sets in multiple-objective mathematical programming. Math. Program. 87(3), 543–560 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  52. Stein, C., Wein, J.: On the existence of schedules that are near-optimal for both makespan and total weighted completion time. Oper. Res. Lett. 21(3), 115–122 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  53. Steuer, R.E.: Multiple Criteria Optimization: Theory, Computation, and Application. Wiley, New York (1986)

    MATH  Google Scholar 

  54. Tsaggouris, G., Zaroliagis, C.: Multiobjective optimization: improved FPTAS for shortest paths and non-linear objectives with applications. Theory Comput. Syst. 45(1), 162–186 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  55. Vassilvitskii, S., Yannakakis, M.: Efficiently computing succinct trade-off curves. Theor. Comput. Sci. 348(2–3), 334–356 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  56. Warburton, A.: Approximation of Pareto optima in multiple-objective, shortest-path problems. Oper. Res. 35(1), 70–79 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  57. White, D.J.: Epsilon efficiency. J. Optim. Theory Appl. 49(2), 319–337 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  58. Wiecek, M.M.: Advances in cone-based preference modeling for decision making with multiple criteria. Decis. Mak. Manuf. Serv. 1(1–2), 153–173 (2007)

    MathSciNet  MATH  Google Scholar 

  59. Yu, P.L.: Cone convexity, cone extreme points, and nondominated solutions in decision problems with multiobjectives. J. Optim. Theory Appl. 14(3), 319–377 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  60. Zhang, K.S., Han, Z.H., Li, W.J., Song, W.P.: Bilevel adaptive weighted sum method for multidisciplinary multi-objective optimization. AIAA J. 46(10), 2611–2622 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret M. Wiecek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanderpooten, D., Weerasena, L. & Wiecek, M.M. Covers and approximations in multiobjective optimization. J Glob Optim 67, 601–619 (2017). https://doi.org/10.1007/s10898-016-0426-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-016-0426-4

Keywords

Navigation